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Topological measurement-based quantum computation (MBQC) enables one to carry out universal fault-
tolerant quantum computation via single-qubit measurements with a family of large entangled states called
cluster states as resources. Raussendorf’s three-dimensional cluster states (RTCSs) based on the surface codes are
mainly considered for topological MBQC. In such schemes, however, the logical Hadamard, phase (Z1/2), and T
(Z1/4) gates which are essential for building up arbitrary logical gates are not implemented natively without using
state distillation or lattice dislocations, to the best of our knowledge. In particular, state distillation generally
consumes many ancillary logical qubits; thus it is a severe obstacle against practical quantum computing. To
solve this problem, we suggest an MBQC scheme via a family of cluster states called color-code-based cluster
states (CCCSs) based on the two-dimensional color codes instead of the surface codes. We define logical qubits,
construct elementary logical gates, and describe error correction schemes. We show that all logical Clifford
gates generated by the CNOT, Hadamard, and phase gates can be implemented natively in a fault-tolerant manner,
although the T gate still requires state distillation to be fault-tolerant. The error thresholds of MBQC via CCCSs
for logical-Z errors are calculated to be 2.7%–2.8%, which are comparable to the values for RTCSs, assuming
a simple error model where physical qubits have nontrivial errors independently with the same probability. We
analyze and compare the resource overheads of both the schemes. In particular, we show that the number of
physical qubits required for implementing a phase gate with CCCSs is at least about 26 times smaller than with
RTCSs using state distillation, for the same code distance.
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I. INTRODUCTION

Three major theoretical challenges for quantum compu-
tation (QC) are universality, fault tolerance, and resource
efficiency. Universality indicates the ability of a quantum
computer to initialize logical qubits to the computational ba-
sis state, apply any unitary operations, and measure them in
the computational basis. It is known that the controlled-NOT

(CNOT), Hadamard, and phase (Z1/2) gates completely gener-
ate the Clifford group, and together with the T (Z1/4) gate,
any unitary operation may be approximated to an arbitrary
accuracy [1,2].

To achieve fault tolerance, various quantum error-
correcting (QEC) codes have been proposed from simple
codes with few physical qubits [3–7] to topological stabilizer
codes defined on lattice structures of qubits allowing only
local interactions [8]. Several simple codes also have been
demonstrated experimentally in assorted systems for small
code distances [9–17]. Particularly, the surface codes [18–25],
a family of topological codes defined on two-dimensional
(2D) lattices, have high error thresholds up to about 12%

*jeongh@snu.ac.kr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[24]; thus they are one of the most promising candidates for
fault-tolerant QC. The 2D color codes are another family
of topological codes [8,26–28] which enable transversal [29]
implementation of the logical CNOT, Hadamard, and phase
gates due to their self-duality. Moreover, three-dimensional
(3D) gauge color codes even allow transversal implementation
of the logical T gate as well as the Clifford gates, and thus
have been getting much attention recently [30–35].

Last, fault-tolerant universal QC typically requires enor-
mous resource overheads, which makes it tough to realize it.
It is not only because a single logical qubit is composed of
multiple physical qubits, but also because state distillation,
which generally demands many ancillary logical qubits, is
required for non-Clifford gates and sometimes for several
Clifford gates to be fault-tolerant [22,24,36,37]. It is thus
desirable to find QC schemes minimizing the need for state
distillation.

Measurement-based QC (MBQC) is an alternative of
conventional circuit-based QC (CBQC), processed only by
single-qubit measurements on a large entangled state called
a cluster state [38–43]. The ingredients for generating a
cluster state are physical qubits initialized to the X -basis
states and appropriate controlled-Z (CZ) gates on them;
thus MBQC requires fewer types of physical-level opera-
tions than typical CBQC. The initial MBQC schemes via
cluster states on 2D planes [39,40] were universal but not
fault-tolerant. To achieve fault tolerance, the space should be
3D; Raussendorf’s 3D cluster states (RTCSs) based on the
surface codes allow universal and fault-tolerant MBQC with
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topologically encoded logical qubits [38,41–44]. Addition-
ally, it was shown that it can tolerate imperfect preparation of
cluster states such as qubit losses or failed CZ gates [45–47].
Recently, it has been shown that it is possible to generalize
the relation between RTCSs and the surfaces codes to any
Calderbank-Steane-Shor (CSS) codes [48,49] and later to any
stabilizer codes [50]. MBQC is now regarded as one of the
promising candidates for practical fault-tolerant QC, espe-
cially in optical systems [47,51–62].

MBQC via RTCSs is powerful from the point of view
of fault tolerance but has a significant drawback: There are
no ways to natively implement the topologically protected
logical Hadamard, phase, and T gates unlike the CNOT gate,
to the best of our knowledge. Several ways to circumvent
this problem have been suggested. The conventional one is
to use costly state distillation; these gates can be realized with
error-free ancilla logical states |YL〉 := (|0L〉 + i|1L〉)/

√
2 and

|AL〉 := (|0L〉 + eiπ/4|1L〉)/
√

2 which are distilled from noisy
ones [38]. Alternatively, there have been proposals to map
lattice surgery [63] onto MBQC models [44,50]. With their
methods, the Hadamard and phase gates can be fault tolerantly
implemented without distillation by “dislocating” the RTCS
lattice structure (i.e., transforming the lattice locally) when
the gates are applied. In other words, the lattice loses its
translational symmetry when the gates are applied. However,
such dislocations may be undesirable from a practical point of
view since the hardware should be capable of applying extra
CZ gates which are not in the original lattice. Namely, the
hardware should be designed in a way that can create multiple
types of lattice structures.

To solve the above problem, we propose a MBQC scheme
via a family of cluster states based on the 2D color codes
instead of the surface codes, called color-code-based cluster
states (CCCSs). We show that MBQC via CCCSs natively
implements the logical Hadamard and phase gates fault
tolerantly without the need of state distillation and lattice
dislocations, while keeping most of the advantages of MBQC
via RTCSs. In this sense, our scheme is hardware efficient.

The paper is structured as follows: In Sec. II we review the
concept of cluster states and the general process of MBQC.
In Sec. III we construct CCCSs and describe their proper-
ties, especially their stabilizers called correlation surfaces.
In Sec. IV we show that universal MBQC is possible via
CCCSs by defining logical qubits and suggesting the schemes
for their initializations and measurements, elementary logical
gates, and state injection. In Sec. V we present the methods to
correct physical-level errors. In Sec. VI we calculate the error
thresholds of MBQC via CCCSs and compare them with the
results for RTCSs. In Sec. VII we analyze and compare the re-
source overheads of placing logical qubits and implementing
each logical gate in the two schemes. We conclude with final
remarks in Sec. VIII.

II. CLUSTER STATES AND MEASUREMENT-BASED
QUANTUM COMPUTATION

To define a cluster state, we consider a graph G = (V, E ),
where V and E are the sets of vertices and edges, respectively.
The cluster state |G〉 is constructed by attaching a qubit to
every vertex in V , initializing them to the |+〉 states where

(a) (b)

FIG. 1. Examples of cluster states. Orange dots and lines indicate
vertices and edges of the graphs, respectively. To construct a cluster
state, qubits initialized to the |+〉 = 1√

2
(|0〉 + |1〉) states are placed

on the vertices, then a CZ gate is applied on the qubits connected
by each edge. (a) A cluster state on a simple graph. The presented
“XZZZ” operator indicates an example of a stabilizer generator
given in Eq. (1). (b) A unit cell of a Raussendorf’s 3D cluster state
(RTCS). A vertex is located on each edge and face of the cell.

|±〉 := (|0〉 ± |1〉)/
√

2, then applying a controlled-Z (CZ) gate
on every pair of qubits connected by an edge.

The constructed cluster state has a stabilizer generator (SG)
S(v) for each vertex v ∈ V defined as

S(v) := X (v)
∏

v′∈adj(v)

Z (v′), (1)

where adj(v) := {v′ ∈ V | (v, v′) ∈ E} is the set of adjacent
vertices of v and X (v) and Z (v) are the X and Z operators,
respectively, on the qubit at the vertex v denoted by Q(v). In
other words, g|G〉 = |G〉 for all g ∈ S , where S is the stabilizer
group generated by {S(v)|v ∈ V }. (See Chap. 10.5 of Ref. [2]
for basic descriptions on the stabilizer formalism.) We say that
S(v) is around v or Q(v), called its center vertex or qubit,
respectively. Examples of cluster states are presented in Fig. 1.

For MBQC, the above definition of a cluster state is slightly
modified: Some qubits (called input qubits) do not need to be
initialized to the |+〉 states. S(v) for each vertex v to which an
input qubit is attached is then no longer a stabilizer, but others
remain as SGs.

General MBQC via a cluster state to implement a quan-
tum circuit is processed through the following three steps
[38–40,42,43]:

(1) Preparation. For a given graph G(V, E ), a qubit is
attached to each vertex. The set of all qubits Q(V ) is divided
into three subsets: the input qubits QIN, the output qubits
QOUT, and the others. QOUT = ∅ if the desired circuit does
not produce any output state or ends with measurements. The
input logical states are prepared in QIN. All qubits except
those in QIN are initialized to the |+〉 states. A CZ gate is then
applied on every pair of qubits connected by an edge.

(2) Measurement. For each physical qubit except those in
QOUT, a single-qubit measurement, selected by a measure-
ment pattern with a classical computer, is performed. The
measurement pattern is determined by the desired circuit. Let
the measurement results be M. If possible, errors in M are
corrected by decoding the parity-check outcomes.

(3) Obtaining the results. The output logical state is
obtained from QOUT up to logical Pauli operators called by-
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FIG. 2. Two typical examples of color-code lattices: the (a) 4-8-8
and (b) 6-6-6 lattices. The lattices are 3-valent and have 3-colorable
faces.

product operators determined by M. If QOUT = ∅, the results
of the final logical measurements are determined by M.

Note that the preparation and measurement steps may be
performed simultaneously; after a qubit q and its neighbors
are prepared and CZ gates are applied on them, it is allowed
that q is measured before the other qubits are prepared. One
of the spatial axes may be regarded as the simulating time
axis, or simply the time axis, along which qubits are prepared
and then measured in order. It is thus possible to minimize
the number of unmeasured physical qubits in a moment by
measuring each qubit as soon as possible after preparing it.

The cores of MBQC are the structure of the cluster state
and the measurement pattern. We illustrate them one by one
over the next two sections.

III. COLOR-CODE-BASED CLUSTER STATES

In this section, we define color-code-based cluster states
and describe their properties. Based on the work on the fo-
liation of CSS codes [48], we consider a particular family
of cluster states derived from a 2D color-code lattice, called
color-code-based cluster states (CCCSs).

A. Two-dimensional color-code lattices

We first present 2D color-code lattices on which CCCSs
are based. We consider a lattice L2D on a 2D plane which is
3-valent and has 3-colorable faces; namely, three edges meet
at each vertex and one of the three colors (red, green, or blue)
is assigned to each face in such a way that neighboring faces
have different colors. Note that each edge, called a link, is
also colorable with the color of the faces it connects. Two
typical examples (4-8-8 and 6-6-6) of such lattices are shown
in Fig. 2. In the original 2D color codes, a qubit is attached to
each vertex and two SGs (X - and Z-type) correspond to each
face. Details on the codes are described in Refs. [8,26].

Regarding a color-code lattice L2D, three shrunk lattices
are defined, one for each color by shrinking all the faces of
that color, as shown in Fig. 3. For example, in the red shrunk
lattice, each vertex corresponds to a red face in L2D and each
face corresponds to a blue or green face in L2D. Edges of the
red shrunk lattice then correspond to red links in L2D. The
blue and green shrunk lattices are also defined analogously.

(a) (b)

FIG. 3. (a) Red and (b) blue shrunk lattices of the 4-8-8 color-
code lattice. Red or blue dots (lines) indicate their vertices (edges),
which corresponds to red or blue faces (links) of the original lattices.

B. Construction of color-code-based cluster states

The graph G for a CCCS based on a color-code lattice L2D

has a 3D structure composed of multiple identical 2D layers
stacked along the simulating time (t) axis. The layer of t = t0
is referred to as the t0-layer.

The structure of each layer is originated from L2D, as
illustrated in Fig. 4(a) for the case of the 4-8-8 lattice. Each
vertex in the layer is located at either a vertex of L2D or the
center of a face of L2D; the corresponding qubit is called a
code qubit (CQ) or an ancilla qubit (AQ), respectively. Each
AQ is colorable with the color of the corresponding face in
L2D. For each face in L2D, the layer has an edge connecting
the corresponding AQ and each surrounding CQ, on which a
CZ gate is applied. Each pair of CQs connected by a link in
L2D is called link here as well. Note that links are not edges
of G.

Next, we stack multiple identical layers along the time axis
as shown in Fig. 4(b). Every pair of CQs adjacent along the
time axis is connected by an edge in G. The vertices (CQs and
AQs) and edges (between CQs and AQs in the same layer and
between CQs in the adjacent layers) constructed above finally
complete the graph G of the cluster state.

We assign each layer, qubit or link a “primality”: either
primal or dual. Each layer is primal (dual) if it has an even
(odd) time. An AQ is primal (dual) if it is in a primal (dual)
layer, while a CQ or link is primal (dual) if it is in a dual
(primal) layer. We label each qubit or link in an abbreviated
form with its primality (“p” for primal and “d” for dual), color
(“r” for red, “g” for green, and “b” for blue; omitted for CQs),
and type (“AQ,” “CQ,” and “L” for a link). For example, a
pgAQ means a primal green ancilla qubit. We also frequently
use “c” instead of a specific color (r, g, or b) for a variable on
colors.

C. Stabilizer generators

We now present stabilizer generators (SGs) of a CCCS.
Note that, for each vertex v in G, S(v) given in Eq. (1) is a
SG if Q(v) is initialized to |+〉. We define A- and C-type SGs
shown in Figs. 5(a) and 5(b) as follows.

Definition 1 (A- and C-type SGs). An A- or C-type SG is
the SG given in Eq. (1) around an AQ or a CQ, respectively.
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FIG. 4. Structure of a color-code-based cluster state (CCCS) based on the 4-8-8 color-code lattice L2D. (a) Structure of a single layer. Each
black circle is a code qubit (CQ) located at a vertex of L2D. Each colored square is an ancilla qubit (AQ) with that color, located at the center
of a face of L2D with that color. Each AQ is connected with surrounding CQs by edges (CZ gates), some of which are drawn as black solid
lines. Two adjacent CQs are connected by a link, some of which are drawn as colored lines. (b) Stack of multiple identical layers along the
simulating time axis. Each pair of two CQs adjacent along the time axis is connected by an edge, some of which are presented as black solid
lines. One of the primalities (“primal” and “dual”) is alternatively assigned to each layer. An AQ (a CQ or link) is primal (dual) if it is in a
primal layer, and vice versa for a dual layer. Labels of some elements defined in Sec. III B are shown.

The support of a C-type SG (namely, the set of qubits on
which the SG acts nontrivially) is distributed in three adjacent
layers, while that of an A-type SG is contained in a layer.

Although these two types of SGs completely generate the
stabilizer group, we need another two types of SGs: L- and
J-type SGs in Figs. 5(c) and 5(d).

Definition 2 (L-type SG). The L-type SG around a link
l is the product of two C-type SGs whose center qubits
constitute l .

(a)

(c) (d)

(b)

FIG. 5. Four types of stabilizer generators (SGs) in a CCCS
defined in Definitions 1–3: (a) A-, (b) C-, (c) L-, and (d) J-type SGs.
Each gray square indicates a layer. An SG of each type is the tensor
product of the marked X or Z operators on the qubits.

Definition 3 (J-type SG). Let Si := S(vi ) for each i ∈
{0, 1, 2, 3} be a C-type SG such that (v0, v1), (v0, v2), and
(v0, v3) are links with different colors. SI := S1S2S3 is then
the J-type SG around the CQ Q(v0).

A-, L-, and J-type SGs together generate the stabilizer
group over-completely. To see this, regarding a J-type SG SI ,
we consider an L-type SG SLi := S0Si for each i ∈ {0, 1, 2, 3},
where Si’s are defined in Definition 3. Then S0 = SL1SL2SL3SI

holds; thus any C-type SG can be written as the product of L-
and J-type SGs.

Let the P-support of a multiqubit Pauli operator O for P ∈
{X,Y, Z} denoted by suppP(O) be the subset of supp(O) (i.e.,
the support of O) corresponding to the P operators in O. Note
that, for every SG regardless of its type, qubits in its X - and
Z-support always have different primalities.

D. Shrunk lattices and correlation surfaces

Almost every discussion from now on is symmetric be-
tween the two primalities. Thus, throughout the rest of this
paper, we frequently discuss only one of them, which implies
that the other side can be treated similarly.

We now construct the shrunk lattices of a CCCS, which
are analogous to those of the 2D color codes in Fig. 3. We
then define correlation surfaces [38,41,42] within each shrunk
lattice, through which logical gates are built for MBQC.

The primal c-colored shrunk lattice Lpc is a 3D lattice
containing every pcAQ as a vertex. Note that the vertices are
only in primal layers. There are two types of edges connecting
them: “spacelike” and “timelike” edges. Each spacelike edge
corresponds to a pcL and connects two vertices in a layer.
Each timelike edge connects two vertices adjacent along the
time axis and contains a dcAQ between them. Faces and cells
are then naturally defined by the vertices and edges. Cells in
each primal shrunk lattice are visualized in Fig. 6 for 4-8-8
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(a) (b)

FIG. 6. Unit cells of the primal shrunk lattices of a 4-8-8 CCCS:
(a) a blue cell in the primal red shrunk lattice Lpr (a green cell is
identical except the colors of AQs) and (b) red and green cells in the
primal blue shrunk lattice Lpb. pts and dts indicate primal and dual
layers, respectively. Some qubits on the last layer are not displayed.
All the pcAQs are vertices of Lpc. Each spacelike (or timelike) edge,
visualized as red or blue solid lines, connects two adjacent vertices
in a layer (or different layers) and corresponds to a pcL (or dcAQ).
Faces and cells are defined naturally with the edges.

CCCSs. Note that each primal layer in Lpc is identical with
the c-colored shrunk lattice of the 2D color code on which the
CCCS is based.

Each element (vertex, edge, face, or cell) in a shrunk lattice
corresponds to an AQ or a link, as presented in Table I. Here
Q(b) for an element b denotes the set of qubits corresponding
to b. Note that an element is colorable with the color of AQ or
link corresponding to it. In particular, cells and spacelike faces
have colors different from the color of the shrunk lattice, e.g.,
Lpr is composed of green and blue cells.

We now regard the shrunk lattices as chain complexes
[38,41,42]. Let Bpc

i for i = 0, 1, 2, or 3 be the set of ver-
tices, edges, faces, or cells in Lpc, respectively. We then
consider a vector space Hpc

i generated by Bpc
i over Z2. Each

primal shrunk lattice may be regarded as a chain complex:
Lpc = {Hpc

3 , Hpc
2 , Hpc

1 , Hpc
0 }. Each element hi ∈ Hpc

i is called
an i-chain and corresponds to a set B(hi ) ⊆ Bc

i where each
b ∈ B(hi ) has nonzero contribution in hi. For example, if f1,
f2, and f3 are faces in Lpc

2 , h2 := f1 + f2 + f3 is a 2-chain
in Hpc

2 and B(h2) = { f1, f2, f3} holds. The correspondence is
one-to-one, and thus we use hi and B(hi ) without distinction
throughout the paper for convenience. The chain complex Lpc

has a boundary map ∂ which maps hi ∈ Hpc
i to ∂hi ∈ Hpc

i−1
corresponding to the geometrical boundary of hi. Note that ∂

is a linear map and satisfies ∂ ◦ ∂ = 0.

TABLE I. Qubits Q(b) corresponding to each element (vertex,
edge, face, or cell) b in Lpc. The results for Ldc can be obtained by
changing each p or d.

Element b in Lpc Qubits Q(b)

Vertex (∈ Bc
0) pcAQ

Edge (∈ Bc
1) Timelike dcAQ

Spacelike dcL (two dCQs)
Face (∈ Bc

2) Timelike pcL (two pCQs)
Spacelike pc′AQ (c′ 	= c)

Cell (∈ Bc
3) dc′AQ (c′ 	= c)

For an i-chain hi and P ∈ {X,Y, Z}, we define a multiqubit
Pauli operator P(hi ) by

P(hi ) :=
∏

q∈Q(hi )

P(q),

where Q(hi ) := ⋃
bi∈hi

Q(bi ) and P(q) is the P operator on
the qubit q tensored with identity on all other qubits. We
now define correlation surfaces (CSs), essential elements for
constructing logical operations through MBQC.

Definition 4 (Correlation surface). For each 2-chain h2 ∈
Hp(d)c

2 , the operator

SCS(h2) := X (h2)Z (∂h2) (2)

is a primal (dual) c-colored correlation surface, referred to as
a “p(d)c-CS.”

It is straightforward to see that, for a spacelike or timelike
face f , SCS( f ) is an A- or L-type SG around the AQ or
link corresponding to f , respectively. The following theorem
relates general 2-chains to stabilizers of the CCCS.

Theorem 1 (Correlation surfaces as stabilizers). For a 2-
chain h2, SCS(h2) is a stabilizer before measuring any qubit
in its support if and only if Q(h2) ∩ QIN = ∅, where QIN is the
set of input qubits defined in Sec. II which are not initialized
to the |+〉 states.

Proof. (If part) Since qubits outside QIN is initialized to
the |+〉 states, there exist the A- or C-type SG around each
of them, as discussed in Sec. II. Let F := { f ∈ Bpc

2 | Q( f ) ∩
QIN = ∅} be a set of faces. For a face f ∈ F , SCS( f ) is a
stabilizer before measuring any qubit in its support; it is an
A- or L-type SG. For a 2-chain h2 ∈ Hpc

2 where Q(h2) ∩
QIN = ∅, h2 can be written as a linear summation of ele-
ments in F : ∃{ fi} ⊆ F , h2 = ∑

i fi. Since the map ∂ is linear
and P(h)P(h′) = P(h + h′) holds for any Pauli operator P,
SCS(h2) = X (h2)Z (∂h2) = ∏

i X ( fi )Z (∂ fi ) = ∏
i SCS( fi) is a

stabilizer before measuring any qubit in its support. The proof
is analogous for dual 2-chains. (Only if part) Since qubits in
QIN are not initialized to the |+〉 states, the A- and C-type SGs
around each of them do not exist. Therefore, the X -support of
any stabilizer cannot contain qubits in QIN. �

Regarding a primal CS S := SCS(h2), Q(h2) is called the
interior of S, in which every qubit is primal and in suppX (S).
Similarly, Q(∂h2) is called the boundary of S, in which every
qubit is dual and in suppZ (S). We say that S is timelike (space-
like) if h2 is composed of timelike (spacelike) faces only.

CSs discussed above include all A- and L-type SGs, but
not J-type SGs in Fig. 5(d). Each J-type SG can be regarded as
three primal timelike CSs with different colors “joined” along
a timelike series of CQs as Fig. 7(a), in the sense that each
“wing” of a color c may be extended by multiplying ordinary
pc-CSs. Note that the CQs along the joint are not included in
the support.

A question arising naturally may be about “spacelike”
joints, and those are also possible as presented in Fig. 7(b). A
timelike pc-CS and two spacelike primal CSs with the other
two colors may be joined along a spacelike series of pcLs.
Such a joint can be obtained by multiplying several A-type
SGs along a spacelike boundary of the timelike CS. Note that
the ends of spacelike and timelike joints may fit perfectly with
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(a) (b) (c)

FIG. 7. (a) Timelike joint of primal correlation surfaces (CSs) originated from a J-type SG. The X or Z operators on the qubits indicate
the support of the resulting CS. A series of CQs along which the three faces meet is marked as a purple dashed line. (b) An example of the
construction of a spacelike joint of three primal CSs. A primal layer of a 4-8-8 CCCS is presented. We first assume a timelike pg-CS S ending
at the green dashed line. We then expand S by multiplying the A-type SGs around the pAQs marked with purple triangles. After the expansion,
suppX (S) contains the marked pAQs, and suppZ (S) contains the CQs along the red and blue solid lines. The red (blue) area above (below) the
green line can be regarded as a pr(b)-CS, in the sense that it may be expanded by multiplying ordinary pr(b)-CSs. A joint of the three CSs
is thus constructed, and S is the corresponding joined CS. The qubits in suppZ (S) inside the area A or B exactly match with the final layer of
a timelike joint; thus spacelike and timelike joints may be connected. (c) An example of a general joint, obtained by multiplying a series of
timelike and spacelike joints together with ordinary CSs.

each other, in the sense that all the Z operators on the joint
cancel out when multiplying them.

A general joint of CSs with different colors can be ob-
tained as Fig. 7(c) by multiplying several spacelike and
timelike joints together with ordinary CSs. We refer to such
a primal CS with a joint as a “pj-CS.” For consistency with
ordinary CSs, we define the interior (boundary) of a pj-CS
by its X (Z)-support, which is intuitive considering its visual-
ization in Fig. 7.

IV. MEASUREMENT-BASED QUANTUM COMPUTATION
VIA COLOR-CODE-BASED CLUSTER STATE

In this section, we describe the scheme for MBQC via
CCCSs. We first introduce defects and define logical qubits
using them. We then describe initializations and measure-
ments of logical qubits and construct elementary logical gates
including the identity, CNOT, Hadamard, and phase gates,
which together generate the Clifford group. We last present
the state injection scheme to prepare arbitrary logical states
and implement the logical T gate.

Each logical initialization, measurement, gate, or state in-
jection process can be regarded as an independent circuit
“block” implemented by the process presented in Sec. II: In
each block, the input logical state is first prepared in the input
qubits QIN, then the output logical state is produced in the
output qubits QOUT after the single-qubit measurements of all
qubits except QOUT. Note that QIN (QOUT) is empty for the
logical initializations (measurements). An arbitrary quantum
circuit can be constructed by connecting multiple blocks in a
way that the output qubits of each block are used as the input
qubits of the next block.

We assume that the single-qubit measurements are per-
formed layer by layer along the simulating time (t) axis. In
that case, the output qubits of a (gate, initialization, or state
injection) block are the last several layers in it, called the
output layers. On the other hand, it is sufficient that the input

qubits of a (gate or measurement) block contain only the first
layer in it, called the input layer. Exceptionally, the input
qubits of a state injection block contain only one qubit into
which an unencoded state is injected.

Two subsequent blocks can be connected in a way that the
input layer of the second block overlaps with the first output
layer of the first block. To see this, let us assume that the
output layers of the first block are the layers of t0 � t � t1.
We first consider applying all the CZ gates between qubits of
t0 � t � t1 again after measuring the qubits of t > t0. Since
the measurements commute with these CZ gates, the qubits of
t0 < t � t1 simply return to the initial |+〉 states. The t0-layer
is then the only layer containing nontrivial information and
used as the input layer of the second block. The CZ gates
in the first t1 − t0 + 1 layers of the second block restore the
output state of the first block to be used as the input state of
the second block. Of course, the above argument is just a trick
to connect two blocks conceptually; it is unnecessary to apply
CZ gates multiple times in a real implementation.

A. Measurement pattern

Note that each qubit except the output qubits is measured
in the basis determined by a predefined measurement pattern.
In our scheme, a qubit is included in an area with one of the
four types: vacuum, defect, Y-plane, and injection qubit. There
may be multiple defects, Y-planes, and injection qubits, and
the entire remaining area is the vacuum. We denote the set of
all vacuum (defect) qubits as V (D).

Defects are key ingredients for the protocol; all the logical
operations completely depend on how to place them. Y-planes
are used in fault-tolerant Y -measurements on physical qubits
for the logical Hadamard and phase gates. Last, each injection
qubit is a special area for state injection and consists of a
single qubit. Note that injection qubits are always input qubits.
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(a) (c) (d)

(b)

FIG. 8. (a) Schematic diagram of a defect (pb-D) and a db-CS S ending at the defect. The defect is defined by Eq. (4) with a 2-chain
hdb

2 ∈ Hdb
2 in the shape of a pipe. (b) Schematic diagram of a pg-CS surrounding a pb-D. (c) A primal layer in a 4-8-8 CCCS penetrated by

a timelike pb-D D(hdb
2 ) for a 2-chain hdb

2 . The cross section of hdb
2 is presented as a blue solid line. Each purple triangle with a solid (dashed)

border indicates a defect pbAQ (pCQ) in the layer (adjacent layer) measured in the Z-basis. The cross sections of a timelike db-CS ending at
the defect and a timelike pg-CS surrounding it are presented as a blue double line and a green dashed line, respectively. The double (or dashed)
lines indicate faces bisected by the layer (or ending at the layer); that is, the corresponding qubits are on the layer (or an adjacent layer). (d) A
dual layer in a 4-8-8 CCCS containing one side of a spacelike pb-D. Part of the 2-chain hdb

2 corresponding to the defect is presented as a gray
surface. A db-CS ending at the defect is visualized as a blue surface, where the blue line corresponds to its boundary.

Qubits in each area are measured as follows:

A qubit is measured
in the basis of

⎧⎪⎨⎪⎩
X if in the vacuum

or an injection qubit,
Z if in a defect,
Y if in a Y-plane.

(3)

Arranging these elements besides the vacuum properly is the
key for implementing logical qubits and gates, which is what
we cover in this section.

B. Defects and related correlation surfaces

We first define a defect as follows.
Definition 5 (Defect). Consider a 2-chain h2 ∈ Hd(p)c

2 in
the shape of a “pipe,” as shown in Fig. 8(a). A primal (dual)
c-colored defect, referred to as a “p(d)c-D,” corresponding to
h2 is defined by

D(h2) :=
⋃
f ∈h2

Q(∂ f ), (4)

which consists of p(d)cAQs and p(d)CQs.
We say that a defect is timelike or spacelike if the “pipe” is

extended along the time axis or an spatial axis, respectively.
It is also possible that the direction of a defect is changed
in the middle. Figures 8(c) and 8(d) illustrate the explicit
structures of timelike and spacelike defects, respectively, in a
4-8-8 CCCS. Here each purple triangle with a solid (dashed)
border indicates a defect qubit located at the layer (adjacent
layer).

We now get the following theorem regarding compatible
CSs surviving after the measurement step.

Theorem 2 (Compatible correlation surfaces). For a set of
qubits Q̃, a CS S is compatible with Q̃ (namely, S is a stabi-

lizer both before measuring any qubit and after measuring all
the qubits in Q̃ \ QOUT) if and only if the followings hold:

Qint (S) ∩ Q̃ \ QOUT ⊆ V \ QIN, (5a)

Qbnd(S) ∩ Q̃ \ QOUT ⊆ D, (5b)

where Qint(bnd)(S) is the interior (boundary) of S and QIN(OUT)

is the set of input (output) qubits.
Proof. Note first that S = X (Qint (S))Z (Qbnd(S)). It is

known [2] that a stabilizer S remains as a stabilizer after
measuring a Pauli operator P if and only if S and P commute.
(If part) Suppose that Eq. (5) holds. Let q be an arbitrary
qubit in Q̃ \ QOUT. If q ∈ Qint (S), q is in the vacuum, and
thus [M(q), S] = [X (q), S] = 0, where M(q) is the single-
qubit Pauli operator on q corresponding to the measurement
pattern. If q ∈ Qbnd(S), q is in a defect, thus [M(q), S] =
[Z (q), S] = 0. If otherwise, q /∈ supp(S), thus M(q) and S
commute. Therefore, S is compatible with Q̃. (Only if part)
Suppose that a CS S is compatible with Q̃. Then S should
commute with M(q) for each qubit q ∈ Q̃ \ QOUT. Let q be an
arbitrary qubit in Qint (S) ∩ Q̃ \ QOUT ⊆ Q̃ \ QOUT. q cannot
be an injection qubit, since Qint (S) ∩ QIN = ∅ according to
Theorem 1 and injection qubits are always input qubits. Thus,
if q /∈ V , M(q) is either Y (q) or Z (q), and thus M(q) and S
anticommute, which contradicts the assumption. Therefore,
q is in V . Since Qint (S) ∩ QIN = ∅, Qint (S) ∩ Q̃ \ QOUT ⊆
V \ QIN holds. Qbnd(S) ∩ Q̃ \ QOUT ⊆ D can be shown
analogously. �

If a CS is compatible with all the qubits except the output
qubits, we say that it is a compatible CS. We particularly want
to emphasize that a compatible CS cannot end in the vacuum
qubits. Note that QIN is excluded in the right-hand side (RHS)
of Eq. (5a) due to Theorem 1.
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TABLE II. Allowed positional relations between a primal defect
d and a compatible CS. The relations for dual defects are analogous.

With a pc-D d , a xy-CS. . .
�����x

y
c c′( 	= c)

p Can be penetrated by d
only if d is timelike.

Cannot be penetrated by d .

Cannot end at d .

d Can be penetrated by d .
Can end at d . Cannot end at d in general.

Table II shows allowed positional relations between a pc-
D d and a compatible CS with each primality and color,
derived from Theorem 2 and Table I. Note that d is com-
posed of pcAQs and pCQs corresponding to edges in Ldc.
Let us first check whether a compatible pc′-CS S can be
penetrated by d . The interior of S corresponds to faces in
Lpc′

; thus it consists of pCQs if S is timelike and pc′′AQs
(c′′ 	= c) if S is spacelike, as shown in Table I. According to
Eq. (5a), the interior should not contain defect qubits for S
to be compatible. Therefore, S can be penetrated by d only
if c = c′ and S is spacelike (i.e., d is timelike). Additionally,
S cannot end at d , since its boundary qubits are dual. Next,
let us check whether a compatible dc′-CS S can end at d .
The boundary of S corresponds to edges in Ldc′

. According
to Eq. (5b), the boundary should contain defect qubits for S
to be compatible. Since the defect qubits correspond to edges
in Ldc, S can end at d if c = c′; otherwise, it is impossible
in general. (There may be specific cases that it is possible
even if c 	= c′, but they are not utilized in our schemes.) Addi-

tionally, S can be penetrated by d since its interior qubits are
dual.

We mainly concern two types of CSs with respect to a pc-
D: pc-CSs surrounding the defect and dc-CSs ending at it, as
shown schematically in Figs. 8(a) and 8(b) and explicitly in
Figs. 8(c) and 8(d). Each of such CSs is compatible with all
the qubits except the boundary qubits in the two ends about
the direction of the defect.

C. Defining a logical qubit

We first define connected 1-chains as follows.
Definition 6 (Connected 1-chain). A 1-chain h1 is con-

nected if and only if it satisfies |∂h1| � 2. It is closed if
|∂h1| = 0 and open if otherwise.

To define a logical qubit, we consider three parallel time-
like defects with different colors passing through the t0- and
(t0 + 1)-layer for a given integer t0, as visualized schemat-
ically in Fig. 9(a). The constructed logical qubit is primal
(dual) if the defects are primal (dual) and t0 is odd (even).

We define a logical qubit by specifying the logical-X (XL)
and logical-Z (ZL) operators. To define XL, for a given pair
of different colors (c, c′), we consider two closed connected
spacelike 1-chains hXdcc′

1 ∈ Hdc
1 and hXpcc′

1 ∈ Hpc
1 : hXdcc′

1 is

located in the t0-layer and surrounding the pc′-D. hXpcc′
1 is

defined by parallelly moving suppZ (XL ) = Q(hXpcc′
1 ) one unit

positively along the time axis. An example of XL is shown
in Fig. 9(a) for the case of (c, c′) = (b, r). Note that the
two 1-chains consist of pcLs and dcLs, respectively. We then
define

XL := F cc′
X (t0) := X

(
hXdcc′

1

)
Z
(
hXpcc′

1

)
. (6)

(a) (b) (c)

(d) (f)

(e)

FIG. 9. Definition of a primal logical qubit and its initialization and measurement. (a) Schematic diagram of a primal logical qubit
composed of three parallel primal timelike defects with different colors. Blue dashed lines indicate 1-chains hXdbr

1 and hXpbr
1 , which constitute

suppX (XL ) and suppZ (XL ), respectively. Red, green, and blue dotted lines indicate 1-chains hZr
1 , hZg

1 , and hZb
1 , respectively, which constitute

suppZ (ZL ) except the pCQ qI at which they end. suppX (XL ) and suppZ (ZL ) meet at a pCQ qanti; thus they anticommute with each other.
(b) Structure of ZL near qI in a 4-8-8 CCCS. Colored lines are hZr

1 , hZg
1 , and hZb

1 , respectively. Purple triangles indicate supp(ZL ). (c) XL- and
(d) ZL-initialization. A logical qubit prepared in the output layers QOUT (t0- and (t0 + 1)-layer). For the XL-initialization, the defects are made
to start from the t0-layer. For the ZL-initialization, they are extended to meet at a point before the layer-t0. XL (ZL) is then a part of a pb-CS
SX (dj-CS SZ ), which is a stabilizer. After the measurement step, the logical qubit in QOUT is initialized to |±L〉 (|0L〉 or |1L〉), depending on
the measurement result of XLSX (ZLSZ ). (e) XL- and (f) ZL-measurement of a logical qubit inserted into the input layer (t0-layer). Each of them
is done by reversing the corresponding initialization process. There then exists a pb-CS SX (dj-CS SZ ) which is a stabilizer, such that the
measurement result of SX XL (SZ ZL) determine the XL (ZL)-measurement result.
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Note that suppZ (XL ) = Q(hXpcc′
1 ) may be in the boundary of

a pc-CS since the boundary is a 1-chain in Hpc
1 as well. The

colors c and c′ can be any pair of different colors, and they are
proven to be equivalent in Sec. IV E 2.

For the ZL operator, we consider an open connected space-
like 1-chain hZc

1 ∈ Hdc
1 for each color c, which is located in

the t0-layer and connects the pc-D and a common pCQ qI , as
shown in Fig. 9(a) schematically. Note that hZc

1 is composed
of pcLs. We define

ZL := FZ (t0)

:= Z (hZr
1 )Z (hZg

1 )Z (hZb
1 )Z (qI ). (7)

Note that qI is out of supp(ZL ). The support of ZL near qI is
explicitly shown in Fig. 9(b), where purple triangles indicate
the support qubits. It is worth noticing that supp(ZL ) may be
in the boundary of a dj-CS, which is verifiable by comparing
supp(ZL ) and the structure of a timelike joint of CSs shown
in Fig. 7(c).

XL and ZL defined above anticommute with each other,
considering that suppZ (ZL ) and suppX (XL ) meet at a pCQ
qanti in Fig. 9(a). A dual logical qubit is defined analogously,
but now the logical operators are defined oppositely; supp(ZL )
surrounds a defect and supp(XL ) ends at each defect.

D. Initialization and measurement of a logical qubit

We first describe initializing a primal logical qubit to an
eigenstate of XL or ZL. A dual logical qubit can be initialized
analogously. As mentioned at the beginning of this section,
in each initialization block, there is no input layer and the
initialized state is prepared in the output layers QOUT (t0- and
(t0 + 1)-layer) after the measurement step.

The XL-initialization of a primal logical qubit is done by
making the defects start from the t0-layer. XL given in Eq. (6)
is then a part of a “cup-shaped” pc-CS SX as shown in
Fig. 9(c). Since XLSX has the support out of the output qubits
and commutes with each single-qubit measurement in the
measurement step, the postmeasurement state is an eigenstate
of XLSX . SX is a stabilizer both before and after the measure-
ment step due to Theorem 2. Therefore, the postmeasurement
state is also an eigenstate of XL and the eigenvalue is deter-
mined by the measurement result of XLSX .

The ZL-initialization of a primal logical qubit is done by
extending the defects to meet at a qubit before the t0-layer,
as shown in Fig. 9(d). ZL given in Eq. (7) is then a part of
a dj-CS SZ which is a stabilizer. From an analogous argu-
ment, the postmeasurement state is an eigenstate of ZL and
the eigenvalue is determined by the measurement result of
ZLSZ . The XL- or ZL-measurement is done by reversing the
time order from the corresponding initialization process, as
shown in Figs. 9(e) and 9(f). This time, QIN is the t0-layer and
QOUT is empty. Regarding the XL-measurement, there exists
a pb-CS SX which is a stabilizer before the measurement
step such that X ′

L := XLSX commutes with each single-qubit
measurement in the measurement step. XL is equivalent to
X ′

L; namely, 〈ψ |XL|ψ〉 = 〈ψ |X ′
L|ψ〉 for every stabilized state

|ψ〉 before the measurement step. Therefore, redefining XL

to X ′
L does not change the logical state encoded in |ψ〉. The

measurement result of X ′
L can be directly obtained from the

(a) (b)

FIG. 10. Construction of the logical identity gate of a primal log-
ical qubit between the input layer QIN (t0-layer) and the output layers
QOUT [t1- and (t1 + 1)-layer]. The gate is constructed by extending
the defects from QIN to QOUT. The logical-X operator in QIN (QOUT)
is XL (X ′

L), and ZL and Z ′
L are defined similarly. (a) XL is transformed

into X ′
L via a pb-CS SX surrounding the red defect, and (b) ZL is

transformed into Z ′
L via a dj-CS SZ ending at the three defects.

Double lines indicate error chains causing logical errors covered in
Sec. V B.

results of the measurement step. The ZL-measurement process
can be verified analogously.

E. Elementary logical gates

1. Identity gate

The identity gate of a primal logical qubit is constructed
just by extending the defects along the time axis between
QIN (t0-layer) and QOUT [t1- and (t1 + 1)-layer] as shown in
Fig. 10. Let XL and X ′

L be the logical-X operators of the
input and output logical qubits, respectively: XL := F br

X (t0)
and X ′

L := F br
X (t1), where F br

X (·) is given in Eq. (6). We con-
sider a pb-CS SX which surrounds the red defect and ends
at suppZ (XL ) and suppZ (X ′

L ), as shown in Fig. 10(a). Since
SX is a stabilizer before the measurement step according to
Theorem 1, XL is equivalent to

X̃L := SX XL =
(⊗

q∈VX

X (q)

)
X ′

L, (8)

where VX := supp(SX XLX ′
L ) ⊂ V \ QOUT. After measuring

qubits excluding output qubits, X̃L is transformed into(∏
q∈VX

xq

)
X ′

L := xX X ′
L,

where xq (zq) is the X (Z)-measurement result of the qubit q.
In other words,

〈ψ |X̃L|ψ〉 = 〈ψ ′|xX X ′
L|ψ ′〉 (9)

holds, where |ψ〉 and |ψ ′〉 are the states before and after the
measurements, respectively. (See Appendix A for the proof.)

We do a similar thing on the ZL operators. Denoting those
of the input and output logical qubits as ZL and Z ′

L, respec-
tively, we consider a dj-CS SZ ending at supp(ZL ), supp(Z ′

L ),
and the defects, as in Fig. 10(b). ZL is then equivalent to

Z̃L := SZ ZL =
( ⊗

q∈VZ

X (q)

)( ⊗
q∈DZ

Z (q)

)
Z ′

L,
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FIG. 11. Construction of the logical CNOT gate between a primal
logical qubit (target) and a dual one (control). Each colored single
(double) line indicates the primal (dual) defect of the corresponding
color. Zp

L ⊗ Id
L is transformed into Zp

L
′ ⊗ Zd

L
′
via the presented dj-CS.

where VZ := suppX (SZZLZ ′
L ) ⊂ V \ QOUT and DZ :=

suppZ (SZZLZ ′
L ) ⊆ D \ QOUT. After the measurement step,

Z̃L transforms into xZzZZ ′
L where xZ := ∏

q∈VZ
xq and

zZ := ∏
q∈DZ

zq.
The transformations of the logical operators are summa-

rized as

XL → xX X ′
L, ZL → xZ zZZ ′

L. (10)

(Throughout this paper, we use prime symbols to distin-
guish the output logical operators from the input ones.) More
explicitly, they are written as

〈ψ |XL|ψ〉 = 〈ψ ′|xX X ′
L|ψ ′〉,

〈ψ |ZL|ψ〉 = 〈ψ ′|xZ zZZ ′
L|ψ ′〉.

Therefore, the input logical state |ψL〉 encoded in |ψ〉 with the
logical Pauli operators {XL, ZL} is transformed into

|ψ ′
L〉 = X (1−xZ zZ )/2Z (1−xX )/2|ψL〉

encoded in |ψ ′〉 with the logical Pauli operators {X ′
L, Z ′

L}. This
transformation corresponds to the identity gate up to some
by-product operators determined by the measurement results.
The by-product operators can be handled by a software to be
delayed to the end of the entire circuit and finally merged with
the logical measurements [24].

The above arguments show the basic ideas for implement-
ing logical gates. Regarding n logical qubits, let PLi for each
P ∈ {X, Z} and integer i � n denote the logical-P operator of
the ith logical qubit. To construct a general logical gate U for n
logical qubits, one should find a configuration of defects (and
Y-planes for some gates) where a CS SPi exists for each PLi

satisfying the following conditions:
Condition 1. SPi should connect PLi of the input logical

qubits and UPLiU † of the output logical qubits. XL (ZL) of
a logical qubit can be connected with primal (dual) CSs.

Condition 2. SPi should be compatible with all qubits ex-
cept supp(PLi); it satisfies the relationships shown in Table II
in that region.

If such CSs exist, the configuration implements the desired
logical gate with some by-product operators obtained from the
measurement results.

2. CNOT and primality-switching gates

We first consider a CNOT gate between a primal logical
qubit (target) and a dual one (control). Figure 11 illustrates

(a)

(b)

FIG. 12. (a) Construction of the primality-switching gate chang-
ing a primal logical qubit to a dual one. Zp

L is transformed into Zd
L

′

via the presented dj-CS. (b) A circuit equivalent to the primality-
switching gate. Mp

Z is the ZL-measurement on the primal qubit, and
the result is zp.

the defect configuration, where the pg-D of the primal logical
qubit and the dr-D of the dual one are twisted one round with
each other, which is commonly called defect braiding. The
logical Pauli operators are transformed as{

X p
L Id

L → X p
L

′
Id
L

′
, Ip

L X d
L → X p

L
′
X d

L
′
,

Zp
L Id

L → Zp
L

′
Zd

L
′
, Ip

L Zd
L → Ip

L
′
Zd

L
′
,

(11)

where the tensor product symbols and the sign terms such as
xX , xZ , and zZ in Eq. (10) are omitted, and each superscript p
or d indicates the primality of the logical qubit. The above
transformation is exactly the Heisenberg picture of a CNOT

gate where the primal logical qubit is the target.
We need to find CSs satisfying two Conditions presented

in Sec. IV E 1 to verify the transformations in Eq. (11). A dual
CS for the transformation of Zp

L ⊗ Id
L is presented schemati-

cally in Fig. 11. Note that the “tunnel” of the CS along the
dr-D must be formed since the dr-D cannot overlap with a
dg-CS (see Table II). A CS for Ip

L ⊗ X d
L can be constructed

analogously; now a tunnel of a pr-CS is made along the pg-D.
The other two transformations are straightforward.

Exploiting a CNOT gate discussed above, it is possible
to make a primality-switching gate which changes a pri-
mal logical qubit to a dual one, by “closing” the input part
of the dual one and the output part of the primal one, as
shown in Fig. 12(a). Note that these closures indicate the
ZL-measurement of the primal one and the XL-initialization
of the dual one. The modified configuration is thus equivalent
to the circuit in Fig. 12(b) up to by-product operators, which
implements the identity or XL gate while changing the primal-
ity. Alternatively, this result is directly obtainable by finding
appropriate CSs; for example, the dj-CS in Fig. 12(a) ver-
ify the transformation of Zp

L to Zd
L

′
. The primality-switching

gate from a dual logical qubit to a primal one can be made
similarly.

The primality-switching gate enables the CNOT gate be-
tween logical qubits with arbitrary primalities. Regardless of
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the primalities of the input logical qubits, one can switch them
to primal (target) or dual (control), and apply a CNOT gate in
Fig. 11.

Note that the equivalence between the different definitions
of the XL operator, related to the choice of the color pair (c, c′)
in Eq. (6), can be proven with the primality-switching gate.
We consider a chain of two primality-switching gates: primal
→ dual → primal. No matter how XL is defined in the first
primal logical qubit, it becomes symmetric about the color in
the dual one. We can thus transform it into any definition of
XL in the final primal one.

3. Hadamard gate

To construct a logical Hadamard gate, the logical Pauli
operators should be transformed as

XL → Z ′
L, ZL → X ′

L. (12)

It is simple if the gate is located just after a state injection
block presented in the Sec. IV F: injecting the unencoded state
to a dual logical qubit instead of a primal one. This method is
valid since the definitions of XL and ZL are opposite for primal
and dual logical qubits.

If the Hadamard gate is located in the middle of the circuit,
it is a bit tricky. Since XL (ZL) of a logical qubit can be con-
nected only with primal (dual) CSs regardless of the primality
of the logical qubit, there should be a CS having different
primalities near the input and output layers, to achieve the
transformation. To solve this problem, we construct a defect
structure starting with a primal logical qubit and ending with
a dual one as shown in Fig. 13, where the primal one stops
at the primal tH -layer and the dual one starts from the dual
(tH + 1)-layer. Each pair of defects with the same color must
have the same spatial structure at t = tH and t = tH + 1. Note
that such a configuration is possible due to the self-duality of
the 2D color codes, which makes primal and dual layers have
the same structure.

We consider two pairs of overlapping primal and dual CSs:
(SZp, SXd) and (SXp, SZd), where SXp, SZp, SXd, and SZd are
a pr-CS, dj-CS, pj-CS, and dr-CS defined in Fig. 13, re-
spectively. SZX := SZpSXd then connects ZL and X ′

L. Similarly,
SXZ := SXpSZd connects XL and Z ′

L. Condition 1 in Sec. IV E 1
is thus satisfied with these two “hybrid” CSs. What remains
is Condition 2. Since SZX and SXZ contain Y operators on
some CQs in the overlapping regions, the qubits should be
measured in the Y -basis for the CSs to be compatible.

To make the Y -measurements fault-tolerant, we introduce
Y-planes:

Definition 7 (Y-plane). A primal (dual) Y-plane is the set
of p(d)CQs in a continuous area contained in a dual (primal)
layer. CQs in Y-planes are measured in the Y -basis.

Errors in Y-planes can be corrected by an error cor-
rection procedure presented in Sec. V C. Therefore, the
Y -measurements for the Hadamard gate can be fault tolerantly
done by placing wide enough Y-planes to cover suppY (SZX )
and suppY (SXZ ) completely. More details including micro-
scopic pictures are presented in Sec. V C.

FIG. 13. Construction of the logical Hadamard gate from a pri-
mal logical qubit to a dual one. Each colored single (double) line
is the primal (dual) defect of that color. SZp is a dj-CS ending at
the three primal defects and the (tH + 1)-layer. Similarly, SXd is a
pj-CS ending at the three dual defects and the tH -layer. SZp and SXd

are chosen so that their supports overlap in the tH - and (tH + 1)-layer
between the defects. Next, SXp is a pr-CS which surrounds the
pg-D and ends at the tH -layer. SZd is a dr-CS which surrounds the
dg-D and reaches the (tH − 1)-layer. Note that SZd does not have
a boundary in the (tH − 1)-layer; instead, its interior is penetrated
by the pg-D. This is possible since SZd and the pg-D have different
primalities. SXp and SZd are chosen so that their supports overlap in
the tH -layer. Finally, SZX := SZpSXd and SX Z := SXpSZd transform the
logical Pauli operators as Eq. (12). The supports of SZX and SX Z are
marked as colored dashed lines and a circle filled in red. In particular,
their Y -support qubits are in the tH - and (tH + 1)-layer and mea-
sured in the Y -basis. For these Y -measurements to be fault-tolerant,
dual and primal Y-planes are placed on the tH - and (tH + 1)-layer,
respectively.

4. Phase gate

To construct a logical phase gate, the logical Pauli opera-
tors should be transformed as

XL → Y ′
L, ZL → Z ′

L.

It can be achieved with the defect structure in Fig. 14(a): The
defects of a logical primal qubits are just extended from the
input layer to the output layer as the logical identity gate in
Fig. 10. The transformation of ZL is straightforward; it is the
same as that in an identity gate in Fig. 10(b). XL is transformed
into Y ′

L by a stabilizer SX := S(1)
X S(2)

X , where S(1)
X and S(2)

X are
CSs defined in Fig. 14(a) and 14(b) as follows: S(1)

X is a pj-CS
connecting XL and X ′

L. It has the form of a pb-CS surrounding
the pr-D near the input and output layers, but is deformed
appropriately through joints in between. (See Fig. 7 for more
details on joints.) S(2)

X is a dj-CS connecting a dual layer
(t = t2) and Z ′

L. These two CSs can be chosen such that SX

contains Y operators in the t2-layer as shown in Fig. 14(c)
schematically as dotted lines.

To make SX compatible between the input and output lay-
ers, a primal Y-plane is placed on the t2-layer to cover the
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(a) (c)

(d)

(b)

FIG. 14. Construction of the logical phase gate on a primal logical qubit. The input logical-X operator (XL) is transformed into the output
logical-Y operator (Y ′

L) via a stabilizer S(1)
X S(2)

X , where S(1)
X and S(2)

X are CSs given as follows: A pj-CS S(1)
X presented in (a) connects XL and X ′

L .
Near the input layer, S(1)

X has the form of a pb-CS surrounding the red defect. On the t1-layer, it is divided into three CSs with different colors
through a spacelike joint. Each CS is then deformed appropriately so that the joint is extended along the black dashed line and suppX (S(1)

X )
contains the 1-chains on the t2-layer (colored dotted lines). On the t3-layer, the joint becomes spacelike again. After that, S(1)

X returns to the
form of a pb-CS and is connected to X ′

L . A dj-CS S(2)
X presented in (b) connects Z ′

L and the 1-chains on the t2-layer (colored dashed lines).
In the t2-layer, the defects are extended in a spacelike manner, and S(1)

X S(2)
X has X and Y operators as shown in (c) and (d). In (c), the colored

circles indicate the timelike defects penetrating the layer and the thick colored lines indicate the spacelike defects. By placing a primal Y-plane
in the area surrounded by the spacelike defects, Y operators in S(1)

X S(2)
X can be measured. In (d), the vicinity of the timelike pb-D is explicitly

described. The colored solid lines indicate the cross sections of the spacelike defects, along which CQs are measured in the Z-basis.

Y operators. (The Y-plane does not affect the transformation
of ZL, since the CS used for the transformation is dual.)
However, this is not enough; because of an issue regarding
error correction near the boundary of the Y-plane, the defects
need to be extended in a spacelike manner to surround the Y-
plane, as shown in Fig. 14(c) schematically and in Fig. 14(d)
explicitly near where two defects meet. More details on it are
presented in Sec. V C and Appendix D.

F. State injection

We finish this section by introducing a state injection
scheme. Preparation of an arbitrary logical qubit a|0L〉 +
b|1L〉 is essential for implementing a logical T gate as well
as quantum computation with arbitrary input states. This is
done in our scheme by injecting the corresponding unencoded
state into a physical qubit.

We start from the configuration for the ZL-initialization of
a primal logical qubit shown in Fig. 9(c), where three defects
meet at a point. First, a qubit qinj in the pc-D for any color c
is selected as an injection qubit which is the only input qubit
in QIN. We assume that the defect is “thicknessless” at qinj;
namely, its cross section at qinj contains at most one qubit
as shown in Fig. 15(a). The desired initial state is injected
into qinj in an unencoded form |ψ〉 = a|0〉 + b|1〉, then the
associated CZ gates are applied. Note that qinj is measured in
the X -basis as stated in Eq. (3). The X (Z) operator on qinj

is transformed into XL (ZL) up to a sign factor as shown in
Fig. 15; thus the logical state |ψL〉 = a|0L〉 + b|1L〉 is prepared
up to by-product operators.

(a) (b)

FIG. 15. State injection procedure. (a) An unencoded state is in-
jected into an injection qubit qinj, which is the only input qubit, in the
pr-D which is spacelike and thicknessless at qinj. Z (qinj ) is invariant
when the CZ gates associated with qinj are applied. However, X (qinj )
is transformed into S(qinj ), where S(qinj ) is the C-type SG around qinj.
S(qinj ) is equivalent to SCS(hpb

2 ) since SCS(hpb
2 ) = S(qinj )S(q1), where

hpb
2 ∈ Hpb

2 is the timelike 2-chain marked as a blue dashed line and
q1 is the marked CQ adjacent to qinj. qinj is measured in the X -basis
during the measurement step. (b) SCS(hdb

2 ) is transformed into XL of
the output logical qubit via the pb-CS SX . Z (qinj ) is transformed into
ZL of the output logical qubit via the dj-CS SZ .
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(a) (b) (c) (d)

(e)

FIG. 16. (a) Explicit structure of a parity-check operator (PC), specifically a pb-PC in a 4-8-8 CCCS. Purple triangles indicate its X -
support qubits. (b) A Z or X -measurement error on a pcAQ (purple triangle) flips two pc-PCs sandwiching q. (c) A dual layer of a 4-8-8
CCCS is presented. Purple triangles indicate the pCQs with errors. Each c-colored face corresponds to a flipped pc-PC, where an example
is shown in (a) as a blue face on the dual layer. (d) A primal blue error chain (pb-EC), where every qubit along a connected dual 1-chain hdb

1

has an error, flips two pb-PCs located at its two ends. (e) Starting from an error on a pCQ qI , a pj-EC is constructed by multiplying a pc-EC
ending at the flipped pc-PC for each color c to the error operator. A pj-EC flips three primal PCs located at its ends.

Note that the state injection procedure is inherently not
fault-tolerant, since it uses an unprotected single-qubit state
and the defect is thicknessless at qinj. Therefore, magic state
distillation is essential for the faithful T gate.

V. ERROR CORRECTION

Now we describe error correction schemes in CCCSs. We
first consider the cases without defects and Y-planes, then
investigate how they affect the scheme.

We consider four types of single-qubit errors: X , Y , and Z
errors before the measurement step and measurement errors.
We say that two sets of (single-qubit) errors are equivalent if
they incur the same logical error. We also say that an error
set is trivial if it does not incur any logical errors (i.e., it is
equivalent to the identity). Note that a measurement error is
equivalent to a Pauli error before the measurement; for exam-
ple, an X -measurement error on a vacuum qubit is equivalent
to a Z error before the measurement. Therefore, we can write
any error set as a tensor product of Pauli operators. Addition-
ally, regarding an error set e, the error set obtained by mul-
tiplying e, arbitrary stabilizers, and arbitrary Pauli operators
commuting with the measurement pattern is equivalent to e.

A. Error correction in the vacuum

For error correction in the vacuum, we exploit parity-check
operators (PCs) defined as follows:

Definition 8 (Parity-check operator). For each cell c, the
CS

SCS(∂c) = X (∂c)

is a parity-check operator (PC), where SCS(·) is given in
Eq. (2).

PCs are classified into six groups according to primalities
and cell colors. Here the primality of a PC SCS(∂c) is that of
the shrunk lattice L containing the cell c, and its cell color is
the color of the AQ Q(c). Note that the cell color is different
from the color of L, as shown in Table I. We refer to a primal
c-colored PC as a “pc-PC.”

Note that a given dcAQ q corresponds to two primal cells:
one for each of Lpc1 and Lpc2 where c, c1, and c2 are all dif-

ferent colors. However, the PCs corresponding to the cells are
indeed the same, considering the structure of each cell shown
in Fig. 6. We can thus regard that one AQ (q) corresponds to
one PC, and denote it as SPC(q). The support of the pc-PC
SPC(q) for a dcAQ q contains two pcAQs and multiple pCQs
around q as shown in Fig. 16(a), where the purple triangles
indicate the support qubits.

We now assume that there are no defects and Y-planes.
Since vacuum qubits are measured in the X -basis, all PCs
survive as stabilizers after the measurement step and thus can
be used to detect Z errors on vacuum qubits. Note that X errors
on them are trivial. The final step for error correction is to
decode errors from the PC measurement results and correct
the errors.

An error may occur on either an AQ or a CQ. An error on a
pcAQ flips two pc-PCs sandwiching the qubit along the time
axis as shown in Fig. 16(b), where the purple triangle indicates
the qubit with an error. An error on a pCQ flips pr-PC, pg-
PC, and pb-PC surrounding the qubit spatially, as shown in
Fig. 16(c). If both the pCQs constituting a pcL have errors,
the two pc-PCs connected by the link are flipped.

Combining the above facts, we conclude that, if every qubit
in Q(hdc

1 ) for a connected dual 1-chain hdc
1 ∈ Hdc

1 has an error,
the pc-PC SPC(q) for each qubit q ∈ Q(∂hdc

1 ) is flipped, as
shown in Fig. 16(d). Such an error set in the vacuum is called
a primal c-colored error chain, referred to as a “pc-EC.”
Furthermore, starting from an error on a pCQ, each flipped
PC may be “moved” by multiplying a primal error chain
of the corresponding color ending at the PC. An error set
constructed by this way flips three primal PCs located at its
ends and is referred to as a “pj-EC.” (A single-qubit error
separated from other error sets is also regarded as a pj-EC
by itself.) General error chains are obtained by connecting
multiple pc-ECs for each color c and pj-ECs.

B. Error correction near defects

We now investigate the effects of a timelike pc-D on the
above error correction scheme. More details on this subsection
are presented in Appendix B.
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(a)
(d)

(b)

(c)

FIG. 17. PCs deformed or created due to a timelike pb-D in a
4-8-8 CCCS. Each purple triangle with a solid (or dashed) border
indicates a defect qubit on the layer (or an adjacent dual layer).
Incompatible pr-PCs and pg-CSs as shown in (a) and (b) are merged
with each other properly to form a compatible stabilizer, whereas
incompatible pb-PCs as shown in (c) are just removed. db-CSs
whose boundaries are in the defect as shown in (d), called defect
PCs, become compatible and are exploited for the error correction
of defect qubits. There are two types of nontrivial undetectable error
chains: dr-ECs and dg-ECs surrounding the defect (green double
solid line) and pb-ECs ending at the defect (blue double dashed line).
Additionally, an error set on defect qubits, called defect error chains,
may be nontrivial and undetectable as well (orange circles).

Due to the existence of the defect, some PCs are merged,
removed, or created, as shown in Fig. 17: First, all primal PCs
whose supports contain defect qubits are no longer compat-
ible, while dual PCs are unaffected. Incompatible pc′-PCs
(c′ 	= c) may be multiplied with each others to form larger
compatible stabilizers, as the ones shown in Figs. 17(a) and
17(b). It is worth noting that such merged PCs are still local
like ordinary PCs; i.e., their sizes are independent of the
thickness of the defect. On the other hand, such processes
are impossible for pc-PCs; thus they are just removed, as
the one shown in Fig. 17(c). Therefore, undetectable pc-ECs
may end at the defect. Last, dc-CSs whose Z-supports are in
the defect (called defect PCs) are now compatible as the one
shown in Fig. 17(d); thus they can be used for error correction.
An error on a defect qubit flips adjacent defect PCs. As in
the case of vacuum qubits, a series of errors on defect qubits
(called defect error chains) flips defect PCs located at its ends.
We now identify nontrivial undetectable error sets which may
cause logical errors for primal logical qubits. Undetectable
error chains in the vacuum are closed or end at defects. Con-
sidering the identity gate of a primal logical qubit, the shortest
error chain inducing a ZL error is a pj-EC ending at the three
defects, and the shortest one inducing an XL error is a closed
dc-EC surrounding the pc′-D (c′ 	= c), as shown schemati-
cally in Fig. 10. Note that a dc-EC surrounding the pc-D is
trivial since every dc-CS ending at the defect commutes with
it. Defect error chains also can be nontrivial and undetectable,
as presented in Fig. 17. They may cause an XL error in a
logical identity gate since they may anticommute with pj-CSs
ending at the defects. The code distance of a logical qubit is
defined by the size of the smallest undetectable error set caus-

(a) (b)

FIG. 18. (a) A primal hybrid PC for error correction in a primal
Y-plane, constructed by multiplying a primal PC and the dual A-type
SG around its center qubit. Circles and squares indicate links and
AQs, respectively, and their colors mean their primalities: orange
(primal) and blue (dual). The hybrid PC contains Y operators on
CQs in the dual layer. (b) Undetectable error chains near a primal
Y-plane. Orange (blue) lines are primal (dual) error chains. Unde-
tectable primal error chains can behave as if there are no Y-planes,
such as (1) and (2). However, if a dual error chain passes through
the Y-plane, there should be a primal error chain of the same color
ending at the intersection point such as (3) and (4), for a total error
set to be undetectable.

ing a logical error, and it increases as the defects get thicker or
get farther from each other. Note that we have considered only
timelike defects here. For spacelike defects, the arguments
are slightly different; for example, an undetectable error chain
may end at a spacelike defect of a different color. However, it
still holds that the code distance depends on the thicknesses of
defects and distances between them. See Appendix B for more
details.

C. Error correction near Y-planes

To correct errors in Y-planes, we use hybrid PCs defined
as follows.

Definition 9 (Hybrid parity-check operator). For each
d(p)cAQ q, the stabilizer SPC(q)SA(q) is a primal
(dual) c-colored hybrid parity-check operator denoted by
p(d)c-HPC, where SPC(q) is the p(d)c-PC corresponding to
q and SA(q) is the A-type SG around q.

As visualized in Fig. 18(a), a primal hybrid PC contains Y
operators on CQs in a dual layer. Ordinary primal PCs inter-
secting a primal Y-plane are no longer compatible; thus primal
hybrid PCs are used instead. A notable thing is that a hybrid
PC contains both primal and dual qubits in its support. There-
fore, a pc-HPC detects not only pc-ECs ending at it but also
timelike dc-ECs penetrating it. As a consequence, in order for
a dc-EC passing through a primal Y-plane to be undetectable,
there should be a pc-EC ending at the pc-HPC located at the
intersection point, such as (3) and (4) in Fig. 18(b). On the
other hand, primal error chains can penetrate a primal Y-plane
or progress in a spacelike manner in it without being detected,
such as (1) and (2) in Fig. 18(b). However, they may end at
the boundary of the Y-plane in contact with the vacuum since
neither hybrid PCs nor ordinary PCs cannot be defined along
the boundary.

As proposed in Sec. IV E, Y-planes are necessary to imple-
ment the logical Hadamard and phase gates. In Appendixes C
and D, we verify that errors can be corrected well (namely,
local nontrivial undetectable error sets near the Y-planes do
not exist) while implementing these gates. Here an error set is
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FIG. 19. ZL error rate per two layers Plog vs nontrivial physical-level error rate pphy, for different code distances with respect to (a) 4-8-8
CCCSs, (b) 6-6-6 CCCSs, and (c) RTCSs. The small graphs show the results near the error thresholds. Pale areas around the lines indicate the
99% confidence intervals of Plog. The error thresholds are obtained by using the results of the two largest code distances (d = 11, 13) and the
values are 2.8% for 4-8-8 CCCSs, 2.7% for 6-6-6 CCCSs, and 3.3% for RTCSs, which are shown as gray dashed lines.

said to be local if its size is unrelated to the distances between
the defects or their thicknesses.

VI. ERROR SIMULATIONS

We here numerically simulate correction of physical-level
errors in MBQC via RTCSs and CCCSs and compare their
error thresholds.

A. Error model

We assume a simple error model where vacuum qubits have
nontrivial single-qubit errors independently with the same
probability pphy. Note that these nontrivial errors contain X -
measurement, Y , and Z errors as discussed in Sec. V; X errors
on vacuum qubits cannot make logical errors.

B. Simulation methods

For each simulation with a code distance of d , we consider
the identity gate of a primal logical qubit covering consecutive
2T + 1 layers with T = 4d + 1 starting from a primal layer.
Simplified defect models presented in Appendix H 1 are used,
instead of considering big areas containing the entire defects.
We calculate the ZL error rate per two layers with the Monte
Carlo method; we repeat a sampling cycle many times enough
to obtain a desired confidence interval of the ZL error rate.
Each cycle is structured as follows.

We first prepare a cluster state whose shape and size are
determined by d and T . Here we assume perfect preparation,
namely, no qubit losses or failures of CZ gates. Errors are then
randomly assigned to primal qubits with a given probability
pphy, except those in the first and final layers to prevent er-
ror chains ending at these layers. After that, the outcomes
of primal PCs are calculated, then decoded to locate errors.
Edmonds’ minimum-weight perfect matching (MWPM) al-
gorithm [64–66] via Blossom V software [67] is used for
decoding (once for RTCSs and six times for CCCSs); more
details on this are presented in Appendix H 2. We then identify
primal error chains connecting different defects which incur
ZL errors by comparing the assigned and decoded errors. We
count such error chains while repeating the cycles and obtain
the ZL error rate per two layers Plog. The error threshold pthrs

is obtained from the calculated Plog results for different values

of d and pphy; Plog decreases as d increases if pphy < pthrs and
vice versa if otherwise.

C. Results

Figure 19 shows the results of the simulations: ZL error
rates (Plog) against nontrivial physical-level error rates (pphy)
for different MBQC schemes and code distances (d). The
obtained error thresholds are about 2.8% for 4-8-8 CCCSs,
2.7% for 6-6-6 CCCSs, and 3.3% for RTCSs. The values for
CCCSs are slightly lower than the value for RTCSs, but they
have similar orders of magnitude.

VII. RESOURCE ANALYSIS

A. Resource overheads for placing logical qubits

We first analyze the minimal resource overheads required
to place logical qubits in RTCSs or CCCSs. We consider
two schemes for RTCS computation: defect-based and patch-
based ones. In the defect-based scheme [38,41–43], each
logical qubit is encoded in a pair of defects and logical op-
erations are done by defect braiding or state distillation. In the
patch-based scheme [44], logical qubits are encoded in square
“patches” separated from each other and logical operations
are done by lattice surgery or state distillation. For CCCS
computation, we consider two types of lattices: 4-8-8 and
6-6-6.

Except for the patch-based RTCS scheme, we consider a
periodic hexagonal arrangement of parallel timelike primal
defects as shown in Appendix E, where primal logical qubits
with the code distance of d are compactly packed in the space.
In other words, the spaces between defects are determined
to minimize the number of physical qubits per logical qubit
while keeping all the possible nontrivial undetectable error
chains to contain d or more qubits. In Appendix E, we first op-
timize the arrangements while ignoring the implementation of
nontrivial logical gates. We then investigate how the arrange-
ments should be changed to make it possible to implement
each logical gate on an arbitrary logical qubit (or an arbi-
trary pair of logical qubits) while keeping the code distance
the same. In particular, for CCCS computation, we first get
the arrangements for implementing each one of the gates (the
CNOT, Hadamard, and phase gates) and then the arrangements
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TABLE III. Resource overheads of RTCS and CCCS computa-
tion, evaluated by the numbers of physical qubits (n) and CZ gates
(NCZ) per layer in terms of the code distance (d) and the number of
logical qubits (k). Only the leading-order terms on d are presented.
For RTCS computation, the patch-based and defect-based schemes
are considered. For CCCS computation, the 4-8-8 and 6-6-6 lattices
are considered. Except for the patch-based RTCS scheme, we regard
optimal hexagonal arrangements of parallel timelike primal defects
shown in Appendix E. The arrangements are optimized while either
ignoring all nontrivial logical gates, considering only one type of
logical gate, or considering general gates.

Considered logical gates n/k NCZ/k

(a) Defect-based RTCS computation
— 6.6d2 13d2

CNOT 6.6d2 13d2

(b) Patch-based RTCS computation
— 3d2 6d2

CNOT 6d2 12d2

(c) 4-8-8 CCCS computation
— 7.5d2 20d2

CNOT 7.5d2 20d2

Hadamard 25d2 66d2

Phase 19d2 50d2

General 32d2 84d2

(d) 6-6-6 CCCS computation
— 6.3d2 17d2

CNOT 6.7d2 18d2

Hadamard 27d2 72d2

Phase 15d2 39d2

General 29d2 77d2

where arbitrary logical gates are applicable. Note that we here
do not consider implementing multiple adjacent gates at the
same time.

Table III shows the calculated values of n/k and NCZ/k
in terms of the code distance d , where k is the number of
logical qubits and n (NCZ) is the number of required physical
qubits (CZ gates) per layer. Note that NCZ/n is 2 for RTCSs and
8/3 for CCCSs. It is observed that the values of n/k are not
significantly different from scheme to scheme if only the CNOT

gates are considered. However, the Hadamard and phase gates
with CCCSs require relatively large values of n/k. Note that,
in a real implementation, the arrangement of logical qubits
does not always have to be the most general one which is the
most costly; thus n/k lies somewhere between these values.
Depending on its purpose, not all types of logical gates may
need to be available for each qubit.

B. Resource overheads for nontrivial logical gates

Considering the results of the previous subsection, our
CCCS scheme seems to be worse than the RTCS schemes in
terms of resource efficiency. However, we remark that those
results show only physical qubits per logical qubit in a layer,
not the real numbers of physical qubits to implement each log-
ical gate, which is investigated in this subsection. To calculate
them, we need to know the number of layers required for each
gate, which is analyzed in Appendix F.

TABLE IV. Numbers of physical qubits required for the logical
CNOT gates with RTCSs or CCCSs. Only the leading-order terms on
d are presented. We consider the two cases for CCCS computation:
Defects are arranged so that (a) only the CNOT gate or (b) all logical
gates are applicable. The results of Table III are used to obtain the
numbers of physical qubits per layer.

Type No. per layer No. of layers Total No.

Defect-based RTCS 13d2 4.5d 59d3

Patch-based RTCSa 12d2 4d 48d3

4-8-8 CCCS (a) 15d2 4d 60d3

6-6-6 CCCS (a) 13d2 4.4d 60d3

4-8-8 CCCS (b) 63d2 4d 250d3

6-6-6 CCCS (b) 56d2 4.4d 250d3

aIf the two logical qubits are not adjacent, about 4d layers are addi-
tionally needed.

Table IV presents the number of physical qubits required
to implement a CNOT gate for each MBQC scheme. For CCCS
computation, we consider the two cases: Defects are arranged
so that only the CNOT gate or all logical gates are applicable.
The numbers of physical qubits per layer are directly obtained
from the results of Table III. Considering the most general
arrangement of defects in each scheme, a CNOT gate requires
about five times more physical qubits in CCCS computation
than in RTCS computation, for the same code distances.

We now evaluate resource overheads for the logical phase
gates, assuming that the gates are implemented by state dis-
tillation in RTCS computation. A logical ancilla state |YL〉 :=
|0L〉 + i|1L〉 is used to implement a phase gate in RTCS com-
putation through the circuit in Fig. 20(a). If |YL〉 has an error
and the other parts of the circuit are perfect, the resulting

FIG. 20. (a) Implementation of a logical phase gate SL with an
ancilla logical state |YL〉 := (|0L〉 + i|1L〉)/

√
2. ZLSL or SL is applied

on the input state if the ZL-measurement result z is +1 or −1,
respectively. (b) Distillation circuit for a |YL〉 state [24]. Each SL

gate is implemented with a noisy |YL〉 state by the circuit in (a).
The XL-measurement (MX ) results determine whether the distillation
succeeds or not. If it succeeds, the distilled state is obtained from
|ψL〉.
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TABLE V. Numbers of physical qubits required for the logical
phase gates in defect-based (DB) RTCS, patch-based (PB) RTCS, or
CCCS computation. Only the leading-order terms on d are presented.
For each RTCS scheme, we consider the two cases: The distillation
cycle (“Dist.”) is repeated once or twice. For CCCS computation,
we assume that the defects are arranged so that all logical gates
are applicable. Lower bounds of residual errors in the output |YL〉
states are calculated for the cases of RTCS computation. The bounds
are achieved when logical errors do not occur during the distillation
processes.

Type No. of physical qubits Residual errora

DB RTCS Dist. once 1000d3 � 7ε3

Dist. twice 7900d3 � 74ε9

PB RTCS Dist. once 840d3 � 7ε3

Dist. twice 6400d3 � 74ε9

4-8-8 CCCS 32d3 -
6-6-6 CCCS 28d3 -

a ε is the error probability of the initial noisy |YL〉 obtained by state
injection.

phase gate also has an error. Seven noisy |YL〉 states can be
distilled to obtain a less noisy |YL〉 state [24,38] via the circuit
shown in Fig. 20(b); if each input state has an XL or ZL error
with a probability of ε and the distillation process is perfect,
the output state has a probability 7ε3 of having an error. The
success probability of the distillation process is 1 − 7ε.

The numbers of physical qubits required for the logical
phase gates are analyzed in Appendix F (for CCCS com-
putation) and Appendix G (for RTCS computation), and the
results together with the residual errors εres in the distilled
|YL〉’s are presented in Table V. For the calculations, we as-
sume that logical qubits are arranged in the way discussed in
Appendix F. The results clearly show that a phase gate with
CCCSs is significantly more resource-efficient (at least about
26 times) than with RTCSs. Note that the nondeterminacy
of distillation is not considered here; if considering it, the
difference in resource overheads gets even bigger.

It is inappropriate to directly compare the Hadamard gates
in the two schemes since RX (π/2) := exp(i π

4 X ) is used in
RTCS computation to complete a universal set of gates instead
of the Hadamard gate [38,44]. Since RX (π/2) is also imple-
mented by state distillation with the state |AL〉, we can at least
say that the Hadamard gate in CCCS computation is a more
resource-efficient element to complete a universal set of gates
than RX (π/2) in RTCS computation. In detail, the circuit to
implement RX (π/2) is the same as the one shown in Fig. 20(a)
except that the target and control of the CNOT gate are swapped
and the ancilla logical qubit is measured in the X -basis, not
the Z-basis. Therefore, it requires almost the same number of
physical qubits as the logical phase gate shown in Table V.
On the other hand, a Hadamard gate in CCCS computation
requires only about 90d2 physical qubits for both the 4-8-8
and 6-6-6 lattice since it needs three consecutive layers: the
(tH − 1)-, tH -, and (tH + 1)-layer in Fig. 13.

The above analyses may be not fair comparisons, since the
same code distance does not mean the same level of protection
against errors. Thus, in Fig. 21 we illustrate the estimated
numbers (n) of physical qubits required for each logical gate

(a) (b) (c)

FIG. 21. Estimated numbers of physical qubits required for
(a) an identity gate, (b) a CNOT gate, or (c) a phase gate vs the logical
error rate Plog for CCCS and RTCS computation, while fixing the
physical-level error rate pphy to 1%. Optimal arrangements of logical
qubits allowing general logical gates presented in Appendix F are
considered. For (a), it is assumed that the total numbers of layers
are equal to twice the code distances. For RTCS computation in (c),
we consider using the state distillation cycle once to implement the
phase gate. Extrapolated values for RTCS computation are shown as
the dashed lines. Note that these results, particularly (b) and (c), are
rough estimations since we use the results in Sec. VI which cover
only ZL errors in the identity gates.

against achievable logical error rates (plog) while fixing the
physical-level error rate (pphy) to 1%, considering the optimal
arrangements allowing general logical gates. For the identity
gate, we assume that the number of layers is equal to twice
the code distance d . It apparently shows that, although the
identity and CNOT gates with CCCSs are slightly more costly
than those with RTCSs, the phase gate with CCCSs is sig-
nificantly more resource-efficient than that with RTCSs. Note
that these results are rough estimations since they are obtained
by using the logical error rates calculated in Sec. VI which
covers only ZL errors in the identity gates. More precisely, for
each logical gate, scheme, and code distance, we here assume
that the logical error rate is equal to pZL

∑
i Ti, where pZL

is the corresponding ZL error rate per two layers calculated
in Sec. VI and Ti is the number of layers demanded by the
ith logical qubit participating in the gate (which can be an
ancillary logical qubit for distillation).

We last remark that state distillation is not the only
method to implement the Hadamard and phase gates with
RTCSs. These gates can be implemented by lattice disloca-
tions [44,50] as mentioned in Sec. I, which may lead to small
resource overheads comparable to those in CCCS computa-
tion. However, we then need to sacrifice the regularity of the
lattices, which is another obstacle to realization.

VIII. REMARKS

In this paper, we have proposed a topological
measurement-based quantum computation (MBQC) scheme
via color-code-based cluster states (CCCSs). We have shown
that our scheme is comparable with or even better than the
conventional scheme via Raussendorf’s 3D cluster states
(RTCSs) [38,41–43], in the following three aspects:
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(1) Universality. Initializations and measurements of log-
ical qubits and all the elementary logical gates constituting
a universal set of gates (the CNOT, Hadamard, phase, and T
gates) can be implemented via appropriate placement of de-
fects and Y-planes. We described each one of them explicitly
in Sec. IV.

(2) Fault tolerance. We suggested the error correction
scheme for each area of qubits in Sec. V. We further verified
in Sec. VI that the error thresholds for errors in the vacuum
have a similar order of magnitude with the values for RTCSs.

(3) Hardware efficiency. Contrary to the case of using
RTCSs, the Hadamard and phase gates are implemented na-
tively with CCCSs, due to the nature of the self-duality of
the 2D color codes. One way to implement these gates using
RTCSs is to use state distillation, but it typically consumes
many ancillary logical qubits [22,36,38]. In Sec. VII B we ver-
ified quantitatively that the phase gate in CCCS computation
demands significantly less physical qubits (at least about 26
times) than that the gate in RTCS computation implemented
by state distillation. Other known methods to implement these
gates with RTCSs require lattice dislocations [44,50] to the
best of our knowledge. Although they are more resource-
efficient than using distillation, the regularity of the lattices
should be sacrificed, which may be undesirable from a prac-
tical point of view. Our protocol with CCCSs does not have
such a problem as well; it always uses strictly regular lattices.

We particularly emphasize the last aspect on hardware effi-
ciency as a definite improvement from the previous schemes,
which makes our scheme an easier-to-implement alternative
to those.

Our work has several limitations. First, logical T gates still
need costly state distillation. Some methods to significantly
reduce the cost of distillation have been proposed, such as
using logical qubits with low code distances as ancilla qubits
[68] or exploiting redundant ancilla encoding and flag qubits
[69]. Moreover, 3D gauge color codes [30–35,70,71] enables
non-Clifford gates without distillation. It may be possible
to translate these protocols to be applicable for our MBQC
scheme. We also assume the perfect preparation of cluster
states, which is unrealistic. It is unclear how much the fault
tolerance gets weaker if we consider qubits losses or failures
of CZ gates, which is particularly related to photon losses in
optical systems. It will be interesting future works to further
investigate and resolve these problems.
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APPENDIX A: VERIFICATION OF EQ. (9)

Here we verify Eq. (9):

〈ψ |X̃L|ψ〉 = 〈ψ ′|xX X ′
L|ψ ′〉. (A1)

We first assume VX = {q0} for a qubit q0. Since there exists a
stabilizer S0 anticommuting with X (q0) before the measure-
ments, 〈ψ |X (q0)|ψ〉 = 0. Thus,

|ψ ′〉 = || I + xq0 X (q0)

2
|ψ〉||−1 I + xq0 X (q0)

2
|ψ〉

= I + xq0 X (q0)√
2

|ψ〉

holds, which gives

〈ψ ′|xX X ′
L|ψ ′〉 = 〈ψ |[I + xq0 X (q0)]xq0 X ′

L|ψ〉
= xq0〈ψ |X ′

L|ψ〉 + 〈ψ |X̃L|ψ〉.
Since X̃L commutes with all stabilizers before the measure-
ments, S0 also anticommutes with X (q0)X̃L = X ′

L, and thus
〈ψ |X ′

L|ψ〉 vanishes. Hence, we get Eq. (A1). For an arbitrary
VX with |VX | > 1, we can show Eq. (A1) by simply repeating
this process for every qubit in VX .

APPENDIX B: DETAILS ON ERROR CORRECTION
NEAR DEFECTS

We here investigate error correction near defects in more
detail than Sec. V B. We introduce a pc-D Dpc = D(h2) for
a 2-chain h2 where D(·) is given in Eq. (4). First, all pri-
mal PCs whose supports contain defect qubits are no longer
compatible, while dual PCs are unaffected. Incompatible PCs
may be multiplied with each other to form larger compatible
stabilizers. Such processes are possible for pc′-PCs (c′ 	= c)
contacting with timelike surfaces of Dpc (namely, timelike
areas of h2), as shown in Fig. 22(a) where a pr-PC and
pg-PC adjacent to a pb-D are merged. It is worth noting
that merged PCs are still local like ordinary PCs; i.e., their
sizes are independent of the thicknesses of Dpc. Other types
of incompatible PCs cannot be merged in such a way, and
thus they are just removed. These include pc′-PCs (c′ 	= c)
contacting with spacelike surfaces of Dpc [e.g., the pr-PC
in Fig. 22(b)] and pc-PCs (e.g., the pb-PCs in Fig. 22).
Last, there are additional stabilizers which become compatible
due to Dpc: dual CSs whose Z-supports are in the defect.
These stabilizers include dc-CSs {SCS( f ) | f ∈ h2} (e.g., the
db-CSs in Fig. 22), and if Dpc is spacelike, they also include
dc′-CSs on the spacelike surfaces of Dpc [e.g., the dg-CS in
Fig. 22(b)]. Such CSs are called defect PCs and used for error
correction in defect qubits.

We now identify nontrivial undetectable error sets regard-
ing primal logical qubits. Let us first consider errors on primal
vacuum qubits. Since pc-PCs adjacent to a pc-D are re-
moved, undetectable pc-ECs can end at the defect as shown in
Fig. 22(a). On the other hand, undetectable pc′-ECs (c′ 	= c)
cannot end at the defect in general, but they may change
their colors while passing through the defect due to merged
PCs. As an exception, if the defect is spacelike, undetectable
pc′-ECs can end at its spacelike surfaces. In order for a primal
error chain to be nontrivial and undetectable, it should end at
multiple different primal defects. For example, for a logical
identity gate of a primal logical qubit, a pj-EC ending at the
three defects incurs a ZL error as shown in Fig. 10(a).

Next, let us consider errors on dual vacuum qubits. All the
dual PCs remain compatible even if a primal defect is placed,
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(a) (b)

FIG. 22. PCs deformed or created due to a (a) timelike or (b) spacelike pb-D in a 4-8-8 CCCS. Each purple triangle with a solid (or
dashed) border indicates a defect qubit on the layer (or an adjacent dual layer). In (a), incompatible pr-PCs and pg-PCs such as the ones
colored in red and green are merged with each other properly to form a compatible stabilizer. However, incompatible pb-PCs such as the one
colored in gray cannot be merged in such a way, and thus they are just removed. db-CSs whose boundaries are in the defect (blue square),
called defect PCs, become compatible and are exploited for error correction in defect qubits. There are two types of nontrivial undetectable
error chains: dr-ECs and dg-ECs surrounding the defect (green double solid line) and pb-ECs ending at the defect (blue double dashed line).
Additionally, an error set on defect qubits, called defect error chains, may be nontrivial and undetectable as well (orange circles). In (b), it is the
same as (a) that incompatible pb-PCs are removed and db-CSs in the defect become compatible. However, incompatible pr-PCs and pg-PCs
are also removed, not merged with each other, which makes it possible that pr-ECs and pg-ECs end at the spacelike surfaces of the defect.
Additionally, dg-CSs in the surfaces also become compatible so can be used as defect PCs. The orange circles with solid borders indicate part
of a nontrivial defect error chain which goes around the surface of the defect. Note that there are undetectable defect error chains which do
not go around the defect but just traverse the spacelike surface of the defect, such as the orange circles with dotted borders. Such defect error
chains are trivial since they commute with db-CSs ending at the defect.

and thus a dual error chain cannot end at the defect. Therefore,
every undetectable dual error chain is closed. A closed dc-
EC E surrounding a pc′-D is nontrivial if c′ 	= c [e.g., the
dg-EC in Fig. 22(a)] since it may anticommute with dc′-CSs
ending at the defect. For example, for a logical identity gate of
a primal logical qubit, a db-EC surrounding the pr-D incurs
an XL error as shown in Fig. 10(b).

Finally, errors on defect qubits also may incur logical er-
rors. An error on a defect qubit flips adjacent two or three
defect PCs. Similar to the case of vacuum qubits, a series
of errors on defect qubits (called defect error chains) flips
defect PCs located at its ends. For a defect error chain to be
nontrivial and undetectable, it should go around the surface
of the defect once, as shown in Fig. 22(a) where the defect
error chain marked as orange circles may anticommute with
db-CSs ending at the defect (see also Fig. 8). Otherwise, the
defect error chain shares an even number of qubits with a db-
CS and thus does not incur a logical error. Furthermore, since
defect PCs contain X operators on dual vacuum qubits, there
exist undetectable error sets containing both dual and defect
error chains. For example, a dc-EC penetrating a dc′-D flips
defect PCs; thus there should be defect error chains ending
at these defect PCs for the total error set to be undetectable.
Note that we can always obtain a dual error chain equivalent
to a defect error chain eD by multiplying A- or C-type SGs
around the qubits in supp(eD).

The code distance is determined by the size of the smallest
nontrivial undetectable error set. Two factors are determin-
ing the code distance: distances between defects and their
thicknesses. The former one is related to error chains ending

at different defects, while the latter one is related to those
surrounding the defects and defect error chains. Note that the
shortest nontrivial undetectable defect error chain is generally
shorter than the shortest nontrivial undetectable dual error
chain, as shown visually in Fig. 22(a), although comparing
them directly may be unfair if the error model used is biased.

APPENDIX C: ERROR CORRECTION IN A LOGICAL
HADAMARD GATE

We here investigate error correction in a Hadamard gate
shown in Sec. IV E 3, especially near the Y-planes. Two con-
secutive Y-planes are required for a Hadamard gate as shown
in Fig. 13: a dual Y-plane at the end of the primal defects
and a primal one at the end of the dual defects. As shown in
Fig. 23(a), each Y-plane completely cover the three defects.
Since there are undetectable error chains connecting the de-
fects and the boundary of the Y-planes, the Y-planes should be
wide enough so that such error chains are longer than the code
distance. Figure 23(b) shows the dual Y-plane near the pb-D,
where the orange circles indicate Y-plane qubits. All dual (pri-
mal) PCs intersecting the dual (primal) Y-plane are replaced
with the corresponding hybrid PCs suggested in Sec. V C.
Exceptionally, dc-HPCs and pc-HPCs overlapping with the
pc-D or dc-D are incompatible since their supports contain
defect qubits. Instead, each pair of them adjacent in a timelike
manner can be merged to form a compatible stabilizer which
can be used for error correction. Additionally, defect PCs (see
Fig. 17) intersecting the Y-planes are also incompatible; thus
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(a)

(b)

FIG. 23. Error correction during the process for a Hadamard
gate, particularly near the Y-planes. (a) The Y-planes should be wide
enough since there are error chains connecting their boundaries and
the defects. The dual Y-plane and the primal defects are shown as
an example. (b) Dual Y-plane in the tH -layer near the pb-D. Defect
(Y-plane) qubits are marked as purple triangles (orange circles). The
same structure is repeated in the next layer for the primal Y-plane
and the db-D. A db-HPC around the defect pbAQ is no longer
compatible and so is the next pb-HPC; thus they are merged to
be compatible. Similarly, a defect PC in the pb-D intersecting the
Y-plane is merged with the adjacent defect PC in the db-D to be
compatible.

each pair of them adjacent in a timelike manner should be
merged to form a compatible stabilizer.

We now verify that local nontrivial undetectable error sets
do not occur during the implementation of a Hadamard gate.
Throughout this Appendix, it is assumed that the Y-planes
are wide enough; thus their boundaries do not need to be
considered. The problems then may happen near where the
Y-planes and defects meet.

Instead of investigating the configuration for a Hadamard
gate in Fig. 13 directly, we introduce a simpler system SI vi-
sualized in Fig. 24, where the primal defects are just extended
straightly instead of changing to dual defects. Let SH denote

FIG. 24. Configuration of the system SI introduced to verify
error correction in a Hadamard gate, where the primal defects are
just extended straightly instead of changing to dual defects.

(a)

(b)

(c)

(d)

FIG. 25. Correspondences of (a), (b) hybrid PCs, (c) merged
hybrid PCs, and (d) merged defect PCs in the original system SH for
a Hadamard gate and merged PCs in SIM , which is called type-1, -2,
-3, and -4 merged PCs, respectively. The circles (squares) indicate
links (AQs). In (a)–(c), the primalities of the qubits are presented as
colors: orange (primal) and blue (dual). In (d), Z-support qubits are
marked as purple triangles. Note that, for each correspondence, both
PCs have the same support if the (tH + 1)-layer in SIM is omitted.

the original system for a Hadamard gate. In SI , a dj-CS S̃ZX

ending at the defects and a pr-CS S̃(1)
XZ surrounding the green

defect are defined as usual. We additionally define a stabilizer
S̃XZ := S̃(1)

XZ S̃(2)
XZ , where S̃(2)

XZ is a closed dr-CS between the
(tH − 1)- and (tH + 1)-layer as shown in Fig. 24.

We also consider another system SIM which is identical
with SI except for one difference: For each of hybrid PCs,
merged hybrid PCs, and merged defect PCs in SH (see
Figs. 18 and 23), a pair of PCs in SI are merged as shown
in Fig. 25 and form type-1, -2, -3, and -4 merged PCs, respec-
tively. These merged PCs are used in SIM instead of original
PCs involved in the (tH + 1)-layer.

We now prove that SH does not allow local nontrivial
undetectable error sets (LNUEs) by showing the following
three statements:

(1) For each error set e in SH , there exists an error set in
SIM which has the same properties (i.e., whether it is local,
trivial, or detectable) as e and does not act on any qubit in
the (tH + 1)-layer. Here we say that an error set in SIM is
nontrivial if it anticommutes with S̃ZX or S̃XZ .
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(2) SI does not allow LNUEs.
(3) If there exists an LNUE in SIM which does not act

on any qubit in the (tH + 1)-layer, there also exists an LNUE
in SI .

1. Proof of the first statement

To show the first statement, we should notice that SIM is
just a variation of SH where an extra layer is inserted between
the tH - and (tH + 1)-layer. (Note that these two layers contain
Y-planes in SH .) For a qubit q in SH at (x, y, t ), let q̃ denote
a qubit in SIM at (x, y, t ) if t � tH and at (x, y, t + 1) if
otherwise. Note that q̃ cannot be in the (tH + 1)-layer. Then
for an error set e in SH , there is an error set ẽ in SIM such that
supp(ẽ) = {q̃ | q ∈ supp(e)} holds. Note that we here consider
only their supports, not their actual operators.

Furthermore, we can find similar correspondences for PCs
and stabilizers for transforming logical operators (SXZ and
SZX ) in SH . [However, this time the supports of their coun-
terparts in SIM may contain qubits in the (tH + 1)-layer.]
Comparing Figs. 13 and 24, supp(S̃ZX ) = {q̃ | q ∈ supp(SZX )}
can be checked. Similarly, supp(S̃XZ ) contains q̃ for each
qubit q ∈ supp(SXZ ), but this time it additionally contains
some qubits in the (tH + 1)-layer. For a PC S in SH , it is
straightforward to obtain a unique PC S̃ in SIM such that
supp(S̃) = {q̃ | q ∈ supp(S)} holds, if S is an ordinary PC or
a defect PC. Otherwise, S is a hybrid or merged PC involved
in Y-plane qubits (see Figs. 18 and 23). In such a case, S̃ is set
to a merged PC in SIM shown in Fig. 25. Likewise, supp(S̃) is
composed of q̃ for each qubit q ∈ supp(S) and some additional
qubits in the (tH + 1)-layer. Note that this correspondence for
PCs is bijective since we remove original PCs involved in the
(tH + 1)-layer which do not have their counterparts in SH .

We can now notice that e and ẽ have the same properties.
Since they have the same size, e is local if and only if ẽ is
local. If e is trivial, e and each of SXZ and SZX share an even
number of qubits; thus so do ẽ and each of S̃XZ and S̃ZX , which
means that ẽ is trivial. [It does not matter that the support
of S̃XZ contains additional qubits in the (tH + 1)-layer, since
it is guaranteed that ẽ does not act on those qubits.] It is
straightforward to see that PCs flipped by e are S1, S2, . . .

if and only if PCs flipped by ẽ are S̃1, S̃2, . . . . Hence, e is
detectable if and only if ẽ is detectable. Finally, ẽ does not act
on any qubit in the (tH + 1)-layer by definition.

2. Proof of the second statement

Noticing that SI is just the simple extensions of defects,
we can show that SI does not allow local undetectable error
sets anticommuting with S̃ZX , S̃(1)

XZ , S̃(2)
XZ , or S̃XZ = S̃(1)

XZ S̃(2)
XZ .

S̃ZX and S̃(1)
XZ are CSs used for a logical identity gate; thus we

already know that this statement is true for them. Since S̃(2)
XZ

is a dual CS, only dual error chains passing through it an odd
number of times can anticommute with it. However, since S̃(2)

XZ
is closed and dual error chains cannot end at primal defects,
there are no undetectable error sets anticommuting with S̃(2)

XZ .
The statement for S̃XZ then automatically holds.

3. Proof of the third statement

Let us assume that there exists an LNUE e in SIM which
does not act on any qubit in the (tH + 1)-layer. Note that SI

has some additional PCs compared to SIM . Therefore, e may
be a local nontrivial detectable error set in SI . In detail, if
two PCs S1 and S2 are merged in SIM , e may flip both S1

and S2 in SI . For example, a type-3 merged PC in Fig. 25(c)
can be written as SdS′

d for two dc-PCs Sd and S′
d, and thus e

may flip both of them. The same argument holds for defect
PCs regarding type-4 merged PCs in Fig. 25(d). However,
considering type-1 and -2 merged PCs in Figs. 25(a) and
25(b), a pc-PC is involved in two merged PCs with two
dc-PCs. Hence, e either commutes or anticommutes with all
these three PCs.

Suppose that e flips np primal PCs, nd dual PCs, and nD

defect PCs. In other words, e anticommutes with a primal
PC Sip and two dual PCs Sid, S′

id (i = 1, . . . , np) of the
same color for a pair of type-1 and -2 merged PCs, with
dual PCs Sid and S′

id (i = np + 1, . . . , nd/2) of the same color
for a type-3 merged PC, and with defect PCs SiD and S′

iD
(i = 1, . . . , nD) for a type-4 merged PC. Here Sid and S′

id are
set to act on qubits of t � tH + 1 and t � tH + 1, respectively.
We define Pp, Pd, P′

d, and PD by the sets of Sip’s, Sid’s, S′
id’s,

and SiD’s, respectively.
Let e(i)

D denote the length-1 defect error chain consisting of
a qubit shared by SiD and S′

iD for each i. e(i)
D is trivial since

the corresponding qubit is a defect CQ which neither S̃ZX nor
S̃XZ contains in its support. (S̃ZX contains defect qubits, but
they are AQs as shown in Fig. 8(c).) Therefore, e1 := e

∏
i e(i)

D
is local, nontrivial, and detected by PCs in Pp ∪ Pd ∪ P′

d.
Let us write e1 := epede′

deD, where ep is a primal error
chain, ed is a dual error chain in the layers of t < tH + 1, e′

d
is a dual error chain in the layers of t > tH + 1, and eD is a
defect error chain. Note that the dual error chain in e1 can be
divided by two in such a way since e does not contain qubits in
the (tH + 1)-layer. Note that primal PCs can be flipped only
by ep. In order for ep to be a proper error chain,

|Ppr| ≡ |Ppg| ≡ |Ppb| ≡ x (mod 2) (C1)

should hold for x ∈ {0, 1}, where Ppc for each color c is the
set of pc-PCs in Pp, because of the fusion rule: A unit error
chain (pr-PC, pg-PC, pb-PC, or pj-PC) always flips either
two PCs of the same color or three PCs of different colors.
Similarly, dual PCs in Pd can be flipped only by ed; thus

|Pdr| ≡ |Pdg| ≡ |Pdb| ≡ y (mod 2) (C2)

holds for y ∈ {0, 1}, where Pdc for each color c is the set of
dc-PCs in Pd.

Now, let e(i)
d denote the length-1 dual error chain consisting

of the qubit shared by Sid and S′
id. Since e(i)

d flips only these
two PCs, e2 := e1

∏
i e(i)

d = eped2eD flips only primal PCs in
Pp, where ed2 := ed

∏
i e(i)

d is a new dual error chain. Since
the primal PCs can be flipped only by ep, ed2eD is local and
undetectable, and thus it is trivial according to the second
statement. Note that the qubit in e(i)

d is a dcAQ in the (tH + 1)-
layer if Sid and S′

id have the color of c. Thus, e(i)
d (for every

i), ed2eD, and ep all commute with S̃ZX which acts only on
vacuum dCQs and defect pAQs. Therefore, e1 = epedeD =
eped2eD

∏
i e(i)

d also commutes with S̃ZX . We however know
that e1 is nontrivial, and thus it should anticommute with S̃XZ .
Moreover, e(i)

d anticommutes with S̃XZ if and only if it is either
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green or blue and located inside the area enclosed by S̃XZ .
Therefore, since e1 anticommutes with S̃XZ ,

e2, S̃XZ = 0 ⇐⇒ |Pdg,I | + |Pdb,I | ≡ 0 (mod 2) (C3)

holds, where Pp(d)c,I is the set of PCs in Pp(d)c to which the
qubits corresponding are located inside the area enclosed by
S̃XZ .

We can get another equation regarding the locality con-
dition. Note that merged c-colored hybrid PCs in SH are
placed inside the c-colored defects (see Fig. 23); thus so are
type-3 c-colored merged PCs in SIM . Since e1 is local and
anticommutes with S̃XZ , it can be assumed that its support
is near the green defect, which indicates that neither dr-PCs
nor db-PCs in SI corresponding to type-3 merged PCs in
SIM are not flipped by e1. Therefore, Sid and S′

id for every
i ∈ {np + 1, . . . , nd/2} are green, and thus{|Ppr| = |Pdr|, |Ppb| = |Pdb|,

|Ppr,I | = |Pdr,I |, |Ppb,I | = |Pdb,I | (C4)

hold. As a consequence, we get

x ≡ |Ppr| = |Pdr| ≡ y (mod 2), (C5)

considering Eq. (C1) and Eq. (C2). For green PCs, we can say
only that

|Ppg| − |Ppg,I | = |Pdg| − |Pdg,I |, (C6)

which is about PCs outside the area enclosed by S̃XZ .
Last, we try to make e2 undetectable by multiplying appro-

priate primal error chains. Note that e2 flips only primal PCs.
First, let us consider moving all flipped PCs in Ppc,I outside
the area enclosed by S̃XZ . If a moved PC is green or blue, the
corresponding multiplied error chain anticommutes with S̃XZ .
After that, since every flipped PC is outside the area, they
can move properly and completely annihilate with each other
without touching S̃XZ , then a local undetectable error chain e3

is finally obtained. To see whether e3 is nontrivial or not, we
use

e3, S̃XZ = 0

⇐⇒ |Pdg,I | + |Pdb,I | + |Ppg,I | + |Ppb,I | ≡ 0 (mod 2),
(C7)

which is obtained by considering the above discussion and the
proposition in Eq. (C3). We get

|Pdg,I | + |Pdb,I | + |Ppg,I | + |Ppb,I | ≡ |Pdg,I | + |Ppg,I |
≡ |Ppg| + |Pdg|
≡ x + y ≡ 0 (mod 2),

where the first equivalence comes from Eq. (C4), the second
one comes from Eq. (C6), the third one comes from Eqs. (C1)
and (C2), and the last one comes from Eq. (C5). Therefore,
e3 is indeed nontrivial. In summary, if there exists an LNUE e
in SIM which does not act on any qubit in the (tH + 1)-layer,
there also exists an LNUE e3 in SI , which contradicts to the
second statement that SI does not allow LNUEs.

FIG. 26. Error correction when the vacuum and a primal Y-plane
on a dual layer are separated by a pb-D. Defect (Y-plane) qubits in
the layer are marked as purple triangles (orange circles). pr-HPC,
pg-HPC, pr-PC, and pg-PCs acting on defect qubits are incompat-
ible, but they can be merged with each other appropriately to form
compatible stabilizers. However, pb-PCs and pb-HPCs overlapping
with the defect cannot be merged in such a way; thus they are just
removed.

APPENDIX D: ERROR CORRECTION IN A LOGICAL
PHASE GATE

Here we investigate error correction in a logical phase gate.
As proposed in Sec. IV E 4, a primal Y-plane is placed in the
middle of the timelike defects of a primal logical qubit. XL is
transformed into Y ′

L via SX := S(1)
X S(2)

X and ZL is transformed
into Z ′

L via SZ , where S(1)
X and a primal CS while S(2)

X and SZ

are dual CSs. It is important that SX has X and Y operators
in the t2-layer on which the Y-plane is placed, as shown in
Fig. 14(c). Unlike the case of the Hadamard gate (see Ap-
pendix C), the Y-plane cannot be made to cover a wide enough
area, since supp(SX ) has X operators on qubits just near the
defects. However, since neither hybrid PCs nor ordinary PCs
are not compatible along the interface between the Y-plane
and vacuum, there may be short nontrivial undetectable error
chains near the interface.

On the other hand, if the Y-plane and the vacuum are sep-
arated by defect qubits, compatible PCs can be appropriately
defined along the interface. To see this, let us suppose that
the Y-plane and the vacuum are separated by the pc-D, as
shown in Fig. 26 for c = b where the orange circles (pur-
ple triangles) indicate Y-plane (defect) qubits in the layer.
Although pc′-PCs and pc′-HPCs (c′ 	= c) acting on defect
qubits are incompatible, they can be merged with each other
appropriately to form larger compatible stabilizers. It is worth
noticing that such “hybrid merged PCs” can be analogously
used instead of original merged PCs near defects in Fig. 17.
Note that, unlike original merged stabilizers, hybrid merged
PCs have Z operators on several defect qubits. Additionally,
defect PCs are not affected by the Y-plane, since they do not
overlap with it.

In summary, each PC near the defect either remains the
same or is just replaced to its “hybrid version” when the
Y-plane is placed. This contrasts with the fact that PCs along
the interface between the Y-plane and vacuum cannot be
compatible. Therefore, we need to extend the defects in a
spacelike manner to surround the Y-plane entirely as visual-
ized in Fig. 14(c), so that the Y-plane contacts only with the
defects. The shape of SX and the paths of defects should be
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(a) (b)

FIG. 27. Microscopic structures near where (a) red and blue defects or (a) blue and green defects are closest for a logical phase gate. The
colored solid (dotted) lines indicate the cross sections of the defects (support of SX ) on the layer; CQs along the lines belong to the defects
(support). Gray areas indicate removed PCs due to the defects.

carefully chosen for the defects not to overlap with supp(SX ).
In particular, the microscopic structures near where two de-
fects are closest are important. As visualized in Fig. 27, the
Y-plane should not contact directly with ordinary PCs for the
vacuum; they always meet separated by a defect.

We now verify that local nontrivial undetectable error sets
do not exist in the above configuration. We first show that
it is enough to consider only primal error chains. It is ob-
served that each hybrid merged PC contains various types
of qubits: primal vacuum, dual vacuum, defect, and Y-plane
qubits. Therefore, primal error chains may end at the Y-plane
and connect with defect or dual error chains without being
detected. However, since there always exists a dual error chain
equivalent to each defect error chain (see Appendix B), we
need to consider only primal and dual error chains.

Let us consider a local undetectable error chain e := eped
where ep (ed) is a primal (dual) error chain. Since there are
neither flipped dual PCs nor dual defects, ed should be closed;
thus there exists a stabilizer S such that suppZ (S) = ed. [If ed
is a closed dc(j)-EC, we can find a pc(j)-CS S whose bound-
ary is supp(ed). ed generally can be written as the product
of multiple closed error chains; thus S is also the product of
the corresponding CSs.] Since suppX (S) is composed of pri-
mal qubits, we get ed ∼ edS = X (suppX (S)) ∼ X (DS )X (YS ),
where the symbol “∼” means the equivalence relation and
DS (YS) is defect (Y-plane) qubits in suppX (S). Here DS can
be assumed to be empty, because ed neither goes around a
defect (since e is local) nor penetrates it (since e should not
be detected by defect PCs). Therefore, ed is equivalent to
a primal error chain in the Y-plane, which means that e is
equivalent to a primal error chain.

We find that local undetectable primal error chains are
trivial. Each of such error chains behaves as if the primal
Y-plane does not exist since each hybrid PC or hybrid merged
PC and the corresponding original one contain exactly the
same primal qubits in their supports. Note that a pc-EC e
can end at the pc′-D d only if c = c′ or the surface where
e meets d is spacelike (see Appendix B). Furthermore, since
dual CSs SZ and S(2)

X always commutes with primal error
chains, we need to consider only S(1)

X , whose support in each

dual layer is shaped as the dotted lines shown in Fig. 28.
Therefore, two types of nontrivial undetectable primal error
chains are possible as shown in Fig. 28: error chains ending
at three or two defects. For an error chain of the second type,
at least one of the surfaces where it meets the defects should
be spacelike. We can check that both of them are nonlocal. (It
may seem unclear that an error chain of the second type is also
nonlocal. However, since it should pass by the timelike part of
a defect to reach its spacelike surface, its size depends on the
circumference of the defect; thus it is nonlocal.)

One may wonder whether the above analysis on error
chains works well even for such extreme cases that two defects
are very close. We can approach the problem in a different
way. Let us consider removing all primal PCs near where
red and blue defects are closest, except red and green PCs
(including their merged ones) in a region close to the blue

(a)
(b)

FIG. 28. Nontrivial undetectable primal error chains regarding a
logical phase gate. The colored circles indicate the timelike parts
of the defects and the thick colored lines indicate their spacelike
parts. supp(SX ) is presented as colored dotted lines. Each of such
error chains can either (a) end at the three defects or (b) end at two
defects, as shown in colored solid lines. In the case of (b), at least
one of the surfaces where it meets the defects should be spacelike.
The intersection points of the error chains and supp(SX ) are marked
as triangles.
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(a) (b)

FIG. 29. Removal of some primal PCs near where (a) red and blue defects or (b) green and blue defects are closest to verify that local
nontrivial undetectable primal error chains in the area do not exist. Each red, green, or blue area indicates a survived pr-PC, pg-PC, or pb-PC,
respectively. Each purple or orange area indicates a survived merged primal PC. Each qubit marked by a black circle is a terminable qubit
which belongs to the support of one PC only.

defect with respect to supp(S(1)
X ), as shown in Fig. 29(a). We

can observe that each vacuum qubit in this area either belongs
to the supports of one or two PCs or does not belong to the
support of any PC at all. In particular, each vacuum qubit
belonging to the support of one PC is contained in supp(SX )
and called a “terminable qubit.” The region near where green
and blue defects are closest can be considered analogously as
shown in Fig. 29(b).

We now show that, if some PCs are removed as suggested
above, any undetectable primal error chain in this area can be
decomposed of multiple undetectable primal error chains by
following steps. For simplicity, we regard an error set and a
PC as its support; i.e., we omit the corresponding operators.
Let e be an undetectable error set.

(1) For each qubit qsng
i ∈ e (i = 1, 2, . . . ) which does not

belong to the support of any PC, a single-qubit error on qsng
i

is undetectable by itself. Define e′ := e \ {qsng}1,q
sng
2 ,···.

(2) Pick a terminable qubit q0 from e′. If there are no such
qubits, skip this and the following step.

(a) Let S0 be the unique PC flipped by an error on q0.
Pick a qubit q1 from e′

0 ∩ S0 where e′
0 := e′ \ {q0} is an

error set. This is possible since e′
0 flips S0 only.

(b) If q1 is terminable, we get an undetectable error set
eend

1 := {q0, q1}.
(c) If otherwise,

(i) Let S1 be the unique PC flipped by an error on q1

such that S1 	= S0. Pick a qubit q2 from e′
1 ∩ S1 where

e′
1 := e′

0 \ {q1} is an error set. This is possible since e′
1

flips S1 only.
(ii) If q2 is terminable, we get an undetectable error

set eend
1 := {q0, q1, q2}.

(iii) If otherwise, repeat step 2(c) analogously for
q2, q3, . . . until we reach a terminable qubit and get an
undetectable error set.

(3) For each i � 2, repeat step 2 for e′ \ (eend
1 ∪ · · · ∪ eend

i−1)
instead of e′ to get an undetectable error set eend

i until there are
no terminable qubits in e′ \ (eend

1 ∪ · · · ∪ eend
i ).

(4) Pick a qubit q0 ∈ e′′ := e′ \ (eend
1 ∪ eend

2 ∪ · · · ). If there
are no such qubits, skip this and the following step.

(a) Let S−1 and S0 be PCs flipped by q0. Pick a qubit
q1 ∈ e′′

0 ∩ S0 where e′′
0 := e′′ \ {q0}. This is possible since

e′′
0 flips S−1 and S0. Let S1 be the unique PC flipped by an

error on q1 such that S1 	= S0.
(b) Through the same method as step 2, obtain qubits

q2, . . . , qi and the corresponding PCs S2, . . . , Si where
Si = S−1. The only difference from step 2 is that e′′

j for
j < i flips not only Sj but also S−1. Such a qubit qi always
can be reached since the number of PCs is limited.

(c) ecyc
1 := {q0, . . . , qi} is then an undetectable error

set.
(5) For each i � 2, repeat step 4 for e′′ \ (ecyc

1 ∪ · · · ∪ ecyc
i−1)

instead of e′′ to get an undetectable error set ecyc
i until e′′ =

ecyc
1 ∪ · · · ∪ ecyc

i holds.
Through the above process, we can decompose an un-

detectable primal error chain e into multiple mutually
disjoint undetectable primal error chains: {qsng

1 }, {qsng
2 }, . . . ,

eend
1 , eend

2 , . . . , ecyc
1 , ecyc

2 , . . . . For each i, eend
i starts from a

terminable qubit and end at another, while {qsng
i } and ecyc

i con-
tain only nonterminable qubits. Since all qubits in supp(SX )
in the area are terminable, ecyc

i for each i meets supp(SX )
twice, while {qsng

i } and ecyc
i for each i does not meet it at

all. Therefore, e commutes with SX ; thus it is trivial. In other
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words, every local undetectable primal error chain near where
two defects are closest is trivial if some PCs are removed.
This statement also holds for the original setting where PCs
are not removed since a local nontrivial undetectable error
chain retains these properties even if some PCs are removed.

APPENDIX E: RESOURCE ANALYSIS WITHOUT
CONSIDERING NONTRIVIAL LOGICAL GATES

Here we analyze the resource overheads of logical qubits in
MBQC via RTCSs or CCCSs without considering nontrivial
logical gates; namely, we calculate n/k and NCZ/k in terms
of the code distance d , where k is the number of logical
qubits and n (NCZ) is the number of required physical qubits
(CZ gates) per layer. The results on the calculation are pre-
sented in Table III and Sec. VII. We consider two schemes for
RTCS computation: defect-based and patch-based ones. In the
defect-based scheme [38,41–43], logical qubits are encoded
in pairs of defects and logical operations are done by defect
braiding or state distillation. In the patch-based schemes [44],
logical qubits are encoded in square “patches” separated from
each other and fault-tolerant logical operations are done by
lattice surgery or state distillation. For CCCS computation,
we consider two types of lattices: 4-8-8 and 6-6-6.

To make the code distance equal to d , we should find
arrangements of defects or patches where all the possible
nontrivial undetectable error chains contain d or more qubits.
Throughout this Appendix, only the leading-order term on d
is calculated for each result.

We first define the coordinate systems for the analysis. The
x and y axes are presented in Fig. 1(b) for RTCSs and Fig. 2 for
the two types of CCCSs. The unit length is the length of a side
of a unit cell for RTCSs, the distance between adjacent prAQ
and pgAQ for 4-8-8 CCCSs, and half the distance between
two adjacent AQs with the same color for 6-6-6 CCCSs. A
unit area contains three qubits and six CZ gates for RTCSs,
three qubits and eight CZ gates for 4-8-8 CCCSs, and 3

√
3/2

qubits and 4
√

3 CZ gates for 6-6-6 CCCSs. Note that, when
counting CZ gates, we regard that each CZ gate connecting
different layers belongs to these layers divided in half.

The analysis for the patch-based RTCS scheme is straight-
forward. Each patch is a square with side length d and the
gaps between patches are sufficient to be O(1). We therefore
get n/k ≈ 3d2 and NCZ/k ≈ 6d2.

For the other three schemes, we consider hexagonal ar-
rangements of parallel timelike primal defects, where every
error chain connecting different defects or surrounding a
defect has d or more qubits. We need to find the optimal
distances between defects minimizing n/k.

The optimal arrangement for the defect-based RTCS
scheme is shown in Fig. 30(a) where each black square in-
dicates a primal defect and the purple area indicates a region
occupied by a logical qubit. It is straightforward to obtain the
distances, considering that the shortest error chain connecting
(0, 0) and (x, y) contains |x| + |y| + O(1) qubits. The area
occupied by a logical qubit is thus about 35

16 d2 ≈ 2.19d2, and
since a unit area contains three qubits and six CZ gates, we get
n/k ≈ 6.56d2 and NCZ/k ≈ 13.1d2.

It is more tricky to obtain the optimal arrangements in
4-8-8 or 6-6-6 CCCSs. Figure 30(b) shows the concerned

(a)

(b)

FIG. 30. Arrangement of timelike primal defects for calculating
the resource overheads of MBQC via (a) RTCSs or (b) CCCSs. Their
projections on a plane perpendicular to the time axis are schematized.
Each black, red, green, or blue square is a defect, where its color
means the color of the defect in CCCS computation. Each purple
rectangle surrounded by dashed lines is an area occupied by a logical
qubit. Dotted lines indicate all the possible types of error chains
which may be the shortest ones, which are used for obtaining the
values of the marked spaces minimizing the area of a logical qubit.
Note that, in (b), counterparts of some error chains regarding the
exchange of blue and green defects are omitted, since the two lat-
tices (4-8-8 and 6-6-6) which we concern have symmetry on those
defects. The optimal spaces for RTCSs are directly presented in (a).
For CCCSs, they are (α, γ , δ, δ′, ε) = ( 1

2 d, 0, 1
2 d, 1

2 d, 1
2 d ) for 4-8-8

and (α, γ , δ, δ′, ε) ≈ (0.464d, 0.268d, 0.634d, 0.634d, 0.269d ) for
6-6-6. Here the unit length is a side of a unit cell in RTCSs [see
Fig. 1(b)], the distance between adjacent prAQ and pgAQ in 4-8-8
CCCSs [see Fig. 4(a)], and half the distance between two adjacent
prAQs in 6-6-6 CCCSs [see Fig. 2(b)].

hexagonal arrangement with five parameters (α, γ , δ, δ′, ε)
considering the symmetry, where each colored square indi-
cates a defect of the color.

We first consider 4-8-8 CCCSs. The shortest pc-EC con-
necting (0, 0) and (x, y) contains

lc(x, y) :=
{

2 max(x, y) + O(1) if c = r,
|x| + |y| + O(1) otherwise (E1)
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qubits. Also, the shortest defect error chain in a pc-D connect-
ing (0, 0) and (x, y) contains lc(x, y)/2 qubits if the error chain
is in a spacelike surface of the defect. If otherwise, it contains
lc(x, y) qubits (see Fig. 22). The width α of each defect can
be derived from the shortest defect error chain surrounding it:
α = 1

2 d . (It may be more optimal that defects have different
widths for different colors. We however constrain the widths
to be equal for ease of calculation.) The following eight in-
equalities are derived from the eight possible types (A)–(H)
of error chain in Fig. 30(b):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A) 2(δ + δ′ + α) � d,

(B) δ + δ′ + α � d,

(C) 2 max
[

γ+α

2 + ε, min(δ, δ′)
]

� d,

(D) α+γ

2 + ε + min(δ, δ′) � d,

(E) γ + 2 min(δ, δ′) � d,

(F) min(δ, δ′) + ε + 1
2 max(γ − α, 0) � d,

(G) α + 2ε � d,

(H) α + γ + ε � d.

(E2)

Note that, to get the inequalities corresponding to (E)–(H),
the points at which three error chains meet should be placed
carefully. It is straightforward to see that placing each point
just next to the red defect minimizes the length of the error
chain. The area S occupied by a logical qubit is written as

S ≈
(

3

2
α + γ

2
+ ε

)
(δ + δ′ + 2α). (E3)

Minimizing S subject to the above inequalities, we get S ≈
2.5d2 where the corresponding spaces are (α, γ , δ, δ′, ε) =
( 1

2 , 0, 1
2 , 1

2 , 1
2 )d . We thus obtain n/k ≈ 7.5d2 and NCZ/k ≈

20d2.
The optimal arrangement for 6-6-6 CCCSs also can be

derived similarly. The shortest error chain connecting (0,0)
and (x, y) for x, y � 0 contains

l (x, y) := max

(
x + 1√

3
y,

2√
3

y

)
+ O(1) (E4)

qubits. The length of the corresponding shortest defect error
chain is half of it if the error chain is in a timelike surface and
the same as it if otherwise. We thus get α = (2

√
3 − 3)d ≈

0.464d , considering an error chain surrounding a defect. The
following inequalities are derived for each type of error chain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A), (B) 2√
3
(α + δ + δ′) � d,

(C), (D) max
[

α+γ

2 + ε + 1√
3

min(δ, δ′),
2√
3

min(δ, δ′)
]

� d,

(E) γ + 2√
3

min(δ, δ′) � d,

(F) ε + 2√
3

min(δ, δ′) � d,

(G) α + 2ε � d,

(H) α + ε + γ � d.

(E5)

Minimizing S in Eq. (E3) subject to the inequalities,
we get S ≈ 2.41d2 where the corresponding spaces are
(α, γ , δ, δ′, ε) ≈ (0.464, 0.268, 0.634, 0.634, 0.269)d . We
thus obtain n/k ≈ 6.27d2 and NCZ/k ≈ 16.7d2.

(a) (b)

FIG. 31. Checkerboard architecture in patch-based RTCS com-
putation. Blue (gray) squares are patches for logical data (ancilla)
qubits. (a) A CNOT gate between two data qubits (orange circles)
is done with two “merge and split” operations [44] (black lines)
between data qubits and the ancilla qubit A. The ancilla qubit is pre-
pared just before the operation. (b) A CNOT gate between nonadjacent
qubits is done by moving a logical qubit appropriately while setting
aside qubits in the path.

APPENDIX F: RESOURCE ANALYSIS WHILE
CONSIDERING LOGICAL GATES

We here analyze the resource overheads of MBQC via
RTCSs or CCCSs, considering nontrivial logical gates. In
other words, we investigate the optimal arrangements of de-
fects under the constraint that every elementary logical gate
is applicable while keeping the code distance the same. Fur-
thermore, we calculate the total number of physical qubits
required for each logical gate. As in Appendix E, we consider
two types of RTCS schemes (defect-based and patch-based)
and two types of CCCS schemes (4-8-8 and 6-6-6). For the
RTCS computation, we need to consider only the logical CNOT

gate since the other gates are implemented by state distillation.
On the other hand, the logical Hadamard and phase gates
also should be considered for CCCS computation. Note that
we here do not consider applying gates simultaneously on
adjacent logical qubits.

1. Patch-based RTCS computation

A logical CNOT gate in patch-based RTCS computation
[44,63] can be done with lattice surgery between logical
qubits in diagonally adjacent patches, which requires an an-
cillary logical qubit adjacent to both of them. Therefore, there
should be spaces for such ancillary qubits to be defined.
The checkerboard architecture [72] visualized in Fig. 31(a)
allows a CNOT gate between an arbitrary pair of qubits (or-
ange circles). The gate can be directly done if the qubits are
diagonally adjacent; otherwise, one of them should be moved
appropriately while setting aside qubits in the path for a while
as shown in Fig. 31(b). Therefore, we get n/k ≈ 6d2 and
NCZ/k ≈ 12d2, which are twice the values obtained without
considering the CNOT gate.

A CNOT gate between two adjacent qubits requires 4d lay-
ers (2d for each “merge and split” operation) to keep the code
distance at d since a timelike error chain contains one qubit
per two layers. Therefore, at least 48d3 physical qubits are
required for a CNOT gate. If the two qubits are not adjacent,
4d layers are additionally needed to set aside qubits in the
path and put them back. Note that, in the original scheme with
the surface codes [72], multiple SWAP gates are necessary to
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(a) (b)

FIG. 32. Arrangement of defects for the logical CNOT gate in defect-based RTCS computation. (a) The control primal logical qubit is first
switched to a dual one (gray squares). Then one of the dual defects proceeds to wrap around a defect of the target qubit. During this process,
the defect basically proceeds in a spacelike manner, but proceeds by 5

2 d layers along the positive time axis at a specific location (marked as
purple “”). The blue paths indicate two examples of such braiding operations. Primal and dual defects should be more than a certain distance
apart, due to the existence of the two types of nontrivial undetectable error chains (orange dotted lines). (b) 3D picture of a CNOT gate. The
black and blue lines are primal and dual defects, respectively. The orange dotted lines indicate possible types of error chains, from which the
number of layers between defects (highlighted in red) is obtained. Note that a timelike error chain contains one qubit per two layers.

move logical qubits, which is very time-consuming; it is one
of the advantages of MBQC that logical qubits can be moved
quite flexibly.

2. Defect-based RTCS computation

A logical CNOT gate in defect-based RTCS computation is
done by defect braiding [30]; the control logical qubit is first
switched to a dual qubit, one of the defects constituting it pro-
ceeds to surround a defect of the target qubit (called a braiding
operation), and finally the control qubit returns to a primal
qubit. Figure 32(a) shows examples of such operations. New
types of nontrivial undetectable error chains arise from the
coexistence of primal and dual defects as shown in Fig. 32(a):
the error chains ending at primal defects and surrounding
dual defects (or vice versa). These give restrictions that pri-
mal and dual defects must be more than a certain distance
apart (d/8 or d/4). Fortunately, the optimal arrangement in
Fig. 30(a) is spacious enough to satisfy this condition. Thus,
the resource overheads remain the same: n/k ≈ 6.56d2 and
NCZ/k ≈ 13.1d2.

The minimal number of layers required for a CNOT gate
is 9

2 d , which can be obtained by considering possible error
chains shown in Fig. 32(b). Hence, the number of physical
qubits for a CNOT gate is ∼59.1d3.

We note two things regarding the CNOT gate in defect-
based RTCS computation. First, a CNOT gate between any pair
of nonadjacent logical qubits is also possible without mod-
ifying the arrangement. The entire process discussed above
including the number of required layers remains the same,
except that one of the dual defects should proceed further in a
spacelike manner. Second, multiple CNOT gates with the same
control qubit can be done simultaneously by braiding a defect
of the control qubit in a way that its path surrounds one of the
defects of every target qubit. However, additional layers may
be needed during the braiding operation, depending on the

shape of the path. These two statements also hold for CCCS
computation.

3. CCCS computation

For CCCS computation, we first investigate the optimal
arrangement of defects to implement each nontrivial logical
gate: the CNOT, Hadamard, or phase gate. Using these results,
we obtain an arrangement allowing the implementation of the
universal set of gates. Finally, we calculate the number of
physical qubits required for each gate.

a. CNOT gate

The analysis for the CNOT gate in CCCS computation is
analogous to that in defect-based RTCS computation. Simi-
larly, there exist undetectable nontrivial error chains involved
in both primal and dual defects, which may constrain the
minimal distances between them. However, if the width α of
each defect is equal to or larger than that obtained in Appendix
E (α = 1

2 d for the 4-8-8 lattice and α = 0.464d for the 6-6-6
lattice), such error chains are always longer than the code
distance d . We therefore do not need to consider spacelike
gaps between primal and dual defects unless they overlap. (If
they overlap, defect PCs are no longer compatible.)

Figure 33 shows some examples on CNOT gates in CCCS
computation. For a CNOT gate, the control logical qubit is first
switched to a dual logical qubit (squares with dashed borders)
through a primality-switching gate. It is important to make the
spacelike part of one of the dual defects penetrate a primal CS
of a different color (see Fig. 12), as shown by purple circles in
Fig. 33. Additionally, the dual defects should be sufficiently
far away from each other to keep the code distance. As long
as these conditions meet, the dual defects can be placed quite
freely. After the primality-switching gate, the dg-D or db-D
circles around the pr-D of the target logical qubit. In order
for these operations to be possible, we need three simple
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(a)

(c) (d)

(b)

FIG. 33. Arrangement of defects for the logical CNOT gate in CCCS computation. The control primal logical qubits are first switched to
dual ones (colored squares with dashed boundaries) as shown in (a) and (c), then the braiding operations are performed (blue arrows) as shown
in (b) and (d). The spacelike extensions of primal (dual) defects for primality-switching gates are shown as the colored solid (double) lines.
The dual defects penetrate primal CSs at the points marked as the purple circles.

conditions in addition to Eq. (E2) or (E5):

δ � α, δ′ � α, ε � α. (F1)

The previous result for the 4-8-8 lattice satisfies these con-
ditions: (α, γ , δ, δ′, ε) = ( 1

2 , 0, 1
2 , 1

2 , 1
2 )d , n/k ≈ 7.5d2, and

NCZ/k ≈ 20d2. However, for the 6-6-6 lattice, the parameters
should be modified: α = γ = δ = δ′ = ε ≈ 0.464d , n/k ≈
6.72d2, and NCZ/k ≈ 17.9d2.

We now count the required number of layers for a CNOT

gate. Note that a timelike error chain contains one qubit per
two layers. The calculation is analogous to that for RTCS
computation in Fig. 32(b); denoting the depth (i.e., thickness
along the time axis) of each spacelike defect by tdepth and the
gap between each pair of adjacent primal and dual defects
along the time axis by tgap (which are in the units of layers), the
total required number of layers is TCNOT = 4tdepth + 2tgap + 2d .
For both types of lattices, the conditions

1
2 tdepth + 2α � d,

1
2 (tgap + tdepth ) + α � d

are sufficient for error chains surrounding each defect (either
surrounding it completely or ending at other defects of differ-
ent primality) are longer than d . Therefore, we get tCNOT = 4d
for the 4-8-8 lattice and tCNOT ≈ 4.43d for the 6-6-6 lattice.

b. Hadamard gate

We next consider the Hadamard gate. Note that every error
chain connecting the defects and the boundaries of the Y-
planes for the gate should be longer than the code distance
d , as discussed in Appendix C. We assume that the Y-planes
are square in shape as visualized in Fig. 34, where possible
error chains are also presented. For the 4-8-8 lattice, we get{

α � d
2 , δ′ � 3

2 d,

ε − 1
2 (α + γ ) � 2d, γ + 2δ � d,

(F2)

and for the 6-6-6 lattice, we get{
α � (2

√
3 − 3)d, 2√

3
δ′ � 2d,

ε − 1
2 (α + γ ) � 2d, γ + 2√

3
δ � d.

(F3)

Minimizing S subject to the above conditions, for the
4-8-8 lattice, we get n/k = 24.75d2 and NCZ/k = 66d2

for (α, γ , δ, δ′, ε) = ( 1
2 , 0, 1

2 , 3
2 , 9

4 )d . Similarly, for the 6-
6-6 lattice, we get n/k ≈ 26.8d2 and NCZ/k ≈ 71.5d2 for
(α, γ , δ, δ′, ε) ≈ (0.464, 0, 0.866, 1.73, 2.23)d .

Last, a logical Hadamard gate requires only three layers:
the (tH − 1)-, tH -, and (tH + 1)-layer in Fig. 13. Therefore,
although the gate demands relatively many physical qubits per
layer, the total number of required qubits is rather small.

c. Phase gate

We consider last the logical phase gate. Note that defects
are extended in a spacelike manner to surround the Y-plane
for a phase gate (see Sec. IV E 4 and Appendix D). We assume
that these extensions are done as shown in Fig. 35, where pos-
sible nontrivial undetectable error chains are also visualized.
We classify the error chains into Type-1, -2, and -3: Type-1
is for those ending at the three defects in the concerning

FIG. 34. Arrangement of defects for a logical Hadamard gate.
The Y-plane (orange square) covering the logical qubit should be
wide enough so that error chains (colored dotted lines) connecting
its boundary and the defects are longer than the code distance d .
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logical qubit, and Type-2 (Type-3) is for those ending at two
defects of different colors in the same logical qubit (different
logical qubits). Note that Type-2 and Type-3 error chains are
possible since they can end at the spacelike surface of a defect
regardless of their colors (see Appendix B). Such error chains
may cause difficulties, because some of them have lengths
which depend on only the width of each timelike defect as
shown in Fig. 35, but the previous values of the width α (0.5d
for the 4-8-8 lattice and 0.464d for the 6-6-6 lattice) may
be not enough for them to be longer than d . Nevertheless,
the width α0 of each spacelike defect does not need to be
α; we can set it to O(1) and make it deep enough along the
time axis. Another problem is that it is not straightforward to
analytically find conditions regarding Type-1 error chains. We
thus numerically estimate the condition on γ and δ regarding
them. In detail, we randomly sample Type 1 error chains by
choosing their end and joint points for a sufficiently large
number (�10 000) of times, then check whether there are
error chains shorter than d .

For the 4-8-8 lattice, we get the following conditions in
addition to Eq. (E2):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Type-1 (numerical): γ � 0.4d,

0.3γ + δ � 0.45d
Type-2: 2α � d,

3
2α + 1

2γ � d,

α + δ � d,

Type-3: δ′ � d,

ε − 1
2 (α + γ ) � d.

(F4)

The conditions for Type-1 error chains are valid when α =
1
2 d . By minimizing S in Eq. (E3) subject to the above
conditions, we get n/k = 18.75d2 and NCZ/k = 50d2 for
(α, γ , δ, δ′, ε) = ( 1

2 , 1
2 , 1

2 , 1, 3
2 )d .

For the 6-6-6 lattice, we get the conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Type-1 (numerical): γ � 0.5, δ � 0.4
Type-2: (1 + 2√

3
)α � d,

3
2α + 1

2γ � d,
2√
3
(α + δ) � d,

Type-3: 2√
3
δ′ � d,

ε − 1
2 (α + γ ) � d.

(F5)

The conditions on Type-1 error chains are valid
when α = (2

√
3 − 3)d . By minimizing S, we get

n/k ≈ 14.5d2 and NCZ/k ≈ 38.6d2 for (α, γ , δ, δ′, ε) ≈
(0.464, 0.608, 0.402, 0.866, 1.537)d .

Last, the number of layers Tphase required for a phase gate is
determined by the widths of the spacelike defects surrounding
the Y-plane. Since α0 = O(1), the depth of each spacelike
defect should be at least d layers. Therefore, Tphase = d holds
for both types of lattices.

4. Optimal arrangement for general logical gates

Until now, we have investigated the arrangements of de-
fects to implement each of the logical CNOT, phase, and
Hadamard gates. We next find the optimal arrangements
where all the logical gates are applicable. For the 4-8-
8 lattice, considering the conditions in Eqs. (E2), (F1),
(F4), and (F2), we get n/k = 31.5d2 and NCZ/k = 84d2

FIG. 35. Arrangement of defects for a logical phase gate in
CCCS computation. Defects of width α0 are extended in a spacelike
manner to surround the Y-plane. Three types of error chains are
considered: Type-1 is for those ending at the three defects in the
concerning logical qubit and Type-2 (Type-3) is for those ending at
two defects of different colors in the same logical qubit (different
logical qubits).

for (α, γ , δ, δ′, ε) = ( 1
2 , 1

2 , 1
2 , 3

2 , 5
2 )d . For the 6-6-6 lattice,

considering the conditions in Eqs. (E4), (F1), and (F5),
and (F3), we get n/k ≈ 28.7d2 and NCZ/k ≈ 76.5d2 for
(α, γ , δ, δ′, ε) = (0.464, 0.608, 0.464, 1.73, 2.54)d .

APPENDIX G: RESOURCE ANALYSIS ON THE PHASE
GATE USING STATE DISTILLATION IN

RTCS COMPUTATION

For RTCS computation, we consider using state distillation
for the logical phase gate. We assume that logical qubits
are arranged in the same way as described in Appendix F.
Throughout this Appendix, only the leading-order term on d
is calculated for each value.

As shown in Fig. 20(a), a phase gate is implemented with
an ancilla logical state |YL〉 := (|0L〉 + i|1L〉)/

√
2. A noisy

|YL〉 is first prepared by state injection and then distilled with
the circuit in Fig. 20(b). If the initial |YL〉 has an XL or ZL error
with a probability of ε, the distilled state has an error rate of
7ε3 [24,38]. The distillation circuit can be repeated multiple
times to achieve a low enough error rate.

To obtain the resource overheads, we count physical qubits
used for CNOT gates. We assume that multiple CNOT gates with
the same control qubit can be implemented simultaneously,
although it is uncertain for patch-based RTCS computation to
the best of our knowledge. (It is known that such processes
are possible if the rotated surface codes are used [73].)

Using the circuit in Fig. 20(b), we can find out a lower
bound of required layers for each logical qubit. For exam-
ple, denoting the number of layers used for a CNOT gate by
TR, the second one requires 2TR layers, TR for each of the
groups of CNOT gates with the same control qubit in the
distillation circuit and in the SL circuit of Fig. 20(b). The
fourth one requires 5TR layers, 4TR for the CNOT gates in
the distillation and SL circuits and TR for waiting until the
fourth group of single-control CNOT gates ends. Additionally,
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(a) (b) (c)

FIG. 36. Structure of a layer in the simplified defect model for the simulation regarding (a) RTCSs, (b) 4-8-8 CCCSs, or (c) 6-6-6 CCCSs,
particularly when the code distance is d = 3. In (a), blue squares (black circles) indicate primal (dual) qubits. In (b) and (c), a colored solid
line is a boundary corresponding to that color, which can be regarded as a part of a defect. For all of them, dashed lines are examples of primal
error chains incurring ZL errors. Purples triangles indicate the qubits in the error chains, which show that the code distances are three. Defect
models for d > 3 can be constructed analogously by increasing the distances between the boundaries while keeping their shapes.

we need seven logical qubits for noisy |YL〉 states, each of
which occupies TR layers. The number of total physical qubits
required for a distillation circuit is then lower-bounded by
(2 + 2 + 2 + 5 + 4 + 4 + 6 + 1 + 7)rRTR = 33rRTR, where
rR is the number of physical qubits per logical qubit in a
layer.

If a |YL〉 state distilled once is used for a phase gate, total
35rRTR (≈840d3 for patch-based and ≈1030d3 for defect-
based) physical qubits are required since the SL circuit in
Fig. 20(a) additionally occupies 2rRTR qubits. If a |YL〉 state
distilled twice is used, (33 × 7 + 33 + 2)rRTR = 266rRTR (≈
6380d3 for patch-based and ≈7850d3 for defect-based) qubits
are required.

APPENDIX H: DETAILS ON THE CALCULATIONS OF
ERROR THRESHOLDS

We here present some details on the calculation of error
thresholds presented in Sec. VI.

1. Simplified defect models

As mentioned in the main text, we simplify the defect
models for efficient simulations. Instead of considering big
regions containing the entire defects, we consider only regions
surrounded by boundaries corresponding to the defects; that
is, we take account only of error chains located in the “inner”
regions surrounded by the defects. Since those error chains are
strictly shorter than error chains passing outside the regions,
we conjecture that this assumption does not affect the result-
ing ZL error rates much.

Figure 36 shows single layers of the three simplified defect
models for the simulations regarding RTCSs, 4-8-8 CCCSs,
and 6-6-6 CCCSs, respectively. Each layer of the concerned
RTCSs has the shape of a square with a side length of d − 1
in the units of cells for the code distance d , where the bound-
aries are of different types (primal and dual). Any error chain
connecting the two primal boundaries incurs a ZL error. For
CCCSs, we consider a region surrounded by three boundaries
of different colors, where each boundary can be regarded
as a part of a defect. Any error chain connecting the three
boundaries incurs a ZL error.

2. Decoding methods

a. Raussendorf’s 3D cluster states

In an RTCS, the PC outcomes are decoded to locate er-
rors at vacuum qubits via Edmonds’ minimum-weight perfect
matching algorithm (MWPM) [64–66], as frequently used in
the literature [41,45,46,74]. Note that an error chain flips at
most two PCs located at its ends, and if it flips one PC, it
ends at the boundary. Hence, our goal is to figure out the most
probable set of error chains based on the PC outcomes.

The decoding procedure is briefly summarized as follows.
First, a graph is constructed from the PC outcomes. The ver-
tex set of the graph contains two vertices for each flipped PC:
One is the PC itself and the other is the “boundary vertex.”
An edge is connected between each pair of different PCs,
each pair of a PC and the corresponding boundary vertex,
and each pair of different boundary vertices. A “weight” value
is assigned to each edge as follows: If both the vertices are
PCs, the weight is the number of qubits in the shortest error
chain between them. If only one of them is a PC, the weight
is the number of qubits in the shortest error chain between the
PC and the closest boundary. If both of them are boundary
vertices, the weight is zero.

We use the MWPM algorithm via Blossom V software [67]
to search for a set of edges of the graph constructed above
which covers all the vertices, does not contain duplicated
vertices, and minimizes the total weight. Each edge in the
resulting set corresponds to a pair of PCs flipped by an error
chain or a PC flipped by an error chain ending at the boundary,
unless the edge connects two boundary vertices, which is
ignored. We can thus locate errors from the error chain along
the shortest path for each edge.

b. Color-code-based cluster states

The decoding method for RTCSs is not directly applicable
to CCCSs, since an error in a CCCS flips at most three PCs,
unlike the case of an RTCS. The decoding for each sample
requires the application of the MWPM algorithm six times.

First, the outcomes of pb-PCs and pg-PCs are decoded
to find the faces in Lpr containing only one qubit with an
error, via the method analogous to that for RTCSs. This is
possible since each of such faces flips at most two (blue or
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green) PCs like an error in an RTCS. Note that each face in
Lpr corresponds to a pbAQ, pgAQ, or prL. Errors on pbAQs
and pgAQs are thus obtained from this process, while errors
on prLs are left ambiguous (since a prL is composed of two
pCQs). Next, the left results for prLs obtained above and the
outcomes of pr-PCs are decoded to locate errors on prAQs
and pCQs, treating the parity of the number of errors in each
prL like a PC. This is possible since an error on a prAQ or
pCQ flips at most two among pr-PCs and the error parities of
prLs.

All the errors are finally located by the above process.
However, to make the decoding more accurate, we repeat it
for Lpb and Lpg analogously and select the smallest set of
decoded errors among the three results.

We last note the similarities and differences between our
decoding method on CCCSs and the color-code decoders sug-
gested in Refs. [75–77]. First, they have in common that the
MWPM algorithm is first used in the (“shrunk” in our scheme
and “restricted” in Refs. [76,77]) lattice corresponding to each
color derived from the original lattice. However, the processes
after that are different: The MPWM algorithm is used one
more time in our method, while a “local lifting” procedure
is applied in the other decoders. It is not straightforward to
convert these color-code decoders to suit our scheme, since
the lattice structures of CCCSs are in 3D and contain not only
code qubits arranged on color-code lattices but also ancilla
qubits. If such conversions are possible, it will be worth in-
vestigating which one performs better.
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